Как зарядить батарею шуруповерта без родной зарядки
Аккумуляторный шуруповерт – обязательный инструмент любого мастера, занимающегося ремонтом и строительством. Да и в быту он мало лежит без дела, если вы любите мастерить. Особая прелесть таких инструментов в том, что они не привязаны к розетке. Но шуруповерту нужна систематическая подзарядка. Как быть, если не оказалось зарядного устройства? В этой статье мы выясним, как зарядить аккумулятор для шуруповерта без штатного зарядного устройства.
Инструкция по зарядке литиевого АКБ
Современные шуруповерты комплектуются литий-ионными (Li-ion) аккумуляторными батареями, поэтому будем заряжать приборы именно этого типа. Если под рукой не оказалось штатного зарядного устройства (ЗУ), есть несколько вариантов решения проблемы:
- воспользоваться автомобильным зарядным устройством;
- применить автомобильный аккумулятор;
- зарядить батарею блоком питания ноутбука;
- использовать специализированное ЗУ для литиевых аккумуляторов;
- применить лабораторный блок питания.
Поскольку литиевые аккумуляторы капризны и при неправильной зарядке могут быть даже опасны, разберем каждый вариант подробнее.
От автомобильного ЗУ
Устройство для зарядки автомобильных свинцово-кислотных аккумуляторов напряжением 12 V есть у каждого автомобилиста. Но зарядное зарядному рознь. Нам необходимо как минимум такое, которое позволяет регулировать зарядный ток вручную. Хотя идеальным вариантом будет ЗУ со стабилизацией тока, а еще лучше со стабилизацией тока и напряжения.
Если у нас автомат, все просто. Выставляем конечное напряжение зарядки. Его легко рассчитать по такой формуле: конечное напряжение зарядки одного литиевого аккумулятора (4.2 В), помноженное на количество аккумуляторов в батарее. Например, в 12-вольтовой литиевой батарее 3 аккумулятора. Следовательно, нужно выставить напряжение на зарядном устройстве 12.6 В. Затем выводим регулятор зарядного тока в ноль, подключаем АКБ шуруповерта, соблюдая полярность (плюс АКБ к плюсу ЗУ, минус к минусу), включаем зарядку и выставляем зарядный ток не выше 25% от ёмкости батареи шуруповерта. Емкость батареи обычно указывается на ее корпусе.
Литиевые батареи могут заряжаться и током, равным емкости, но такой режим вызывает быструю деградацию элементов. Его лучше использовать, когда «времени нет, но край надо».
Все, нам осталось только ждать. Когда батарея будет заряжена, ЗУ автоматически остановит процесс.
Если у нас нет стабилизации тока и напряжения, придется постоянно контролировать зарядный ток, который по мере зарядки будет меняться, и напряжение. Если ЗУ оснащено собственными вольтметром и амперметром, то используем их. Если нет, то придется добавить измерительные приборы в схему зарядки. Она выглядит примерно так:
Литиевые батареи не терпят перезаряда. Перезаряженный литиевый элемент загорится или даже взорвется. Поэтому внимательно следим за напряжением на АКБ.
Автомобильное ЗУ можно использовать, только если штатное зарядное устройство шуруповерта рассчитано на напряжение не выше 14 В. Если наш шуруповерт рассчитан на зарядку напряжением, скажем, 18 V, то от автомобильного ЗУ он не зарядится.
От автомобильной АКБ
Этот метод годится только для шуруповертов, зарядное устройство которых выдает 12 вольт.
Но напрямую АКБ шуруповерта к автомобильной батарее подключать нельзя. Нужно ограничить ток зарядки. Это несложно сделать при помощи подстроечного проволочного резистора мощностью не менее 10 Вт или автомобильных ламп, включенных параллельно. Сколько нужно ламп – подбираем экспериментально. Они должны обеспечивать зарядный ток в диапазоне 10 – 50% от ёмкости. Превышение тока зарядки может вызвать взрыв литиевого аккумулятора, слишком низкий значительно увеличит ток зарядки.
Добавляем в нашу схему измерительные приборы, вольтметр и амперметр (см. выше), и начинаем зарядку, постоянно контролируя напряжение. Как только оно поднимется до нужной величины (4.2 В, помноженное на количество аккумуляторов в батарее шуруповерта), зарядку останавливаем.
Заряжать 12-вольтовый шуруповерт можно только от полностью заряженной АКБ. Если она подразряжена и напряжение на ее клеммах ниже 12 В, то шуруповерт не зарядится.
Блоком питания от ноутбука
Этот метод подойдет для зарядки батареи любого шуруповерта – хоть двенадцати-, хоть восемнадцативольтового. Для этого достаточно взять блок питания ноутбука, выдающий 19 В.
Алгоритм зарядки тот же, что и при зарядке от автомобильной АКБ. Ограничиваем ток балластным резистором или автомобильными лампами, добавляем в схему измерительные приборы, подключаем АКБ шуруповерта и заряжаем его, постоянно контролируя напряжение.
Специальным зарядным устройством
Самый удобный, но не самый дешевый вариант – универсальное зарядное устройство. К примеру, то, что изображено ниже, стоит порядка 2 500 рублей. И это не самый дорогой вариант.
Универсальное автоматическое зарядное устройство
Но зато этот прибор умеет все – самостоятельно заряжать практически все типы аккумуляторов и батарей на любое напряжение. Нам достаточно указать прибору тип батареи и ее емкость. Вся текущая информация отображается на дисплее, включая время зарядки, текущую степень зарядки, количество полученной батареей энергии и прочее. Есть встроенный балансир для балансировки отдельных аккумуляторов, автоматическое разрядное устройство, измеритель емкости аккумулятора и многое другое.
Такой вариант оптимален, если мы активно занимаемся обслуживанием аккумуляторов разных типов. Если нам нужно заряжать лишь шуруповерт, то покупка такого устройства – деньги на ветер, поскольку подавляющее большинство функций не будет востребовано.
Итак, нам нужно заряжать лишь шуруповерт. Идем в магазин и смотрим. Вот то, что нам нужно. Относительно дешево (от 250 до 350 рублей в зависимости от выходного напряжения) и сердито. Главное – купить то, которое рассчитано на нужное нам напряжение. Они все на одно лицо, но различаются выходным напряжением – 12.6 В, 16.8 В, 21 В, 25 В, и током – 1 А, 2А. То, что изображено на фото, выдает 12.6 вольт и обеспечивает ток 2 ампера.
Говорим продавцу, какая у нас батарея (напряжение и емкость) или на какое напряжение и ток нам нужно ЗУ. Оплачиваем, берем гарантийный талон, зарядное устройство и идем домой пробовать. Нет у нас такого гнезда? Не беда. В комплекте с зарядным устройством оно идет:
Если в комплекте нет, то его несложно найти отдельно в этом же магазине. Врезаем гнездо в аккумуляторную батарею. Подпаиваем, соблюдая полярность: внутренний штырек – «плюс», внешний контакт – «минус» (эта информация нанесена на корпусе зарядного устройства). Подключаем ЗУ и курим. Пока идет зарядка, на зарядном устройстве светится красный глазок. Как только процесс будет завершен, красный глазок сменится зеленым, и зарядка остановится. Отключаем, идем вертеть шурупы.
Важно! Хотя с виду такой прибор – обычный адаптер, на самом деле это автоматическое зарядное устройство для литиевых батарей. Использовать его в качестве блока питания нельзя.
Кстати вы можете заказать такое зарядное для литиевых батарей с алиэкспресс:
Как правильно выбрать:
1. Для шуруповертов с 12-вольтовым аккумулятором нужно зарядное на 12.6 вольт, у продавцов оно может обозначаться как 3S (от названия сборки аккумуляторов — 3 последовательно).
2. Для шуруповертов с 14.4-вольтовым аккумулятором нужно зарядное на 16.8 вольт, у продавцов оно может обозначаться как 4S (4 последовательно соединенных банки).
Лабораторным блоком питания
Здесь процесс ничем не отличается от работы с автомобильным зарядным устройством. Устанавливаем нужный ток, если БП позволяет, то конечное напряжение, и заряжаем. Если конечное напряжение выставить невозможно, то следим за током и за напряжением. Как только оно достигнет заданной величины, аккумуляторную батарею отключаем.
Удобство такого варианта состоит в том, что он позволяет заряжать шуруповерты с любым напряжением батареи, поскольку практически все лабораторные БП смогут обеспечить 25 В. К примеру, тот, что изображен на фото, выдает напряжение до 30 В при токе до 5 А.
На заметку. Покупать лабораторный БП для зарядки шуруповерта смысла нет. Проще обратиться к знакомому радиотехнику, у которого подобное устройство наверняка есть. А может, оно есть и у вас.
Иногда можно пополнить заряд через USB
Существуют шуруповерты, оснащенные портом USB. Пример – шуруповерт Xiaomi Akku Ankuo.
Если у вас такой, то проблем никаких. По утверждению производителя, этот инструмент можно заряжать даже от USB-порта компьютера и ноутбука! Правда, он (производитель) скромно умалчивает, сколько времени займет такая зарядка от ноутбука. Неделю? Две? Поэтому лучше использовать сетевое пятивольтовое зарядное устройство, способное обеспечить ток хотя бы 2-3 А. Правда, есть еще одна проблема: придется найти в магазине или самостоятельно сделать кабель USB/USB.
Важно! В сети много информации о том, как самостоятельно переделать обычный шуроповерт для зарядки от USB. Предлагается просто врезать соответствующее гнездо в шуруповерт и припаять его к аккумулятору. Это полная чушь, которую написал один грамотей, а остальные у него скопипастили.
Оживляем никель-кадмиевую АКБ
Шуруповерты, оснащенные никель-кадмиевыми аккумуляторами, практически ушли в прошлое. Но они еще продаются, встречаются и даже работают, поскольку Ni-Cd-элементы могут «жить» до 20-25 лет, хотя и выдерживают порядка 900 циклов «заряд/разряд». Еще одна особенность никель-кадмиевых аккумуляторов – они могут храниться в разряженном состоянии. Так что если вы нашли на чердаке дедушкин шуруповерт с Ni-Cd-батареей, то есть смысл попытаться его оживить.
Попытаемся зарядить батарею. Подойдет любое ЗУ, способное обеспечить нужное напряжение и ток, равный половине емкости батареи.
Для Ni-Cd-элементов такой ток зарядки нормальный. Они легко выдерживают ток, равный их ёмкости, и даже вдвое больший.
Включаем, пытаемся заряжать. Если АКБ берет зарядку, то продолжаем. Если нет и на ней полый ноль, переходим к плану «Ж» и «П» (см. ниже).
Как только напряжение на батарее достигнет значения 1.37 В, помноженного на количество аккумуляторов, процесс останавливаем. Но это не все. Не факт, что АКБ заряжена полностью. Никель-кадмиевые аккумуляторы страдают так называемым эффектом памяти. Если их постоянно разряжали, скажем, до 60%, а потом ставили на зарядку, то они к этому привыкнут и далее будут отказываться работать при разрядке на все те же 60%. Поэтому разряжаем нашу батарею примерно таким же током, каким и заряжали. Разряжаем до значения 1 В, помноженного на количество аккумуляторов. В качестве нагрузки можно использовать автомобильные лампы или сам шуруповерт.
После этого снова полностью заряжаем. Повторяем операцию «заряд/разряд» 3-4 раза. Полностью заряжаем и пробуем пользоваться шуруповертом. Если даже после всех этих манипуляций емкость АКБ существенно ниже заявленной, то, к сожалению, у нас на руках дряхлый, отживший свое старик. Реанимации он не подлежит.
План «Ж», толкательный
План «Ж» заключается в «толкании» аккумулятора короткими (0.2-0.3 сек) импульсами высокого тока. Причем ток должен быть намного (в десятки раз) больше ёмкости аккумулятора. «Толкать» лучше каждый аккумулятор отдельно. Поэтому вскрываем батарею, выясняем, где у каждого аккумулятора плюс и минус. В качестве толкателя будем использовать автомобильный аккумулятор, но подойдет и любой другой мощный источник напряжением 10-15 В.
Подключаем минус нашего элемента к минусу «толкателя», подключаем один конец провода к плюсу «толкателя», а вторым концом кратковременно касаемся плюсового вывода Ni-Cd-элемента. Частота касаний — 2-3 в секунду. В результате такого прожига устраняются дендриты, вызывавшие микрозамыкания, и батарейка оживает.
Во время касания следим, чтобы провод не приварился к выводу аккумулятора. Вообще лучше касаться не проводом, а, скажем, головкой винта, на который накручен провод. И не забываем про защитные очки!
Операцию проводим в течение 5-6 секунд. Ставим на зарядку. Если процесс пошел, устраняем эффект памяти (см. выше). Пробуем пользоваться.
План «П», доливочный
Этот план эффективен при деградации электролита, ведь в ходе эксплуатации идет процесс окисления с расходом воды. А план таков:
- Микродрелью делаем в корпусе отверстие.
- В отверстие шприцем заливаем 1 кубик дистиллированной воды.
- Ждем час, затем «толкаем» элемент импульсами высокого тока.
- Ставим на зарядку. Ждем сутки, измеряем напряжение.
- Если напряжение в норме, герметизируем отверстие герметиком или пайкой.
- Если упало или элемент не захотел брать зарядку, переходим к пункту 2 и делаем так до тех пор, пока уже некуда будет лить воду.
Если не помогло, то можно почитать статьи “Как переделать аккумуляторный шуруповерт на 12 или 18 В в сетевой своими руками” и “Как сделать блок питания для шуруповерта“. Все же лучше, чем снова забрасывать рабочий инструмент на чердак.
Мы выяснили, как зарядить аккумулятор шуруповерта без родной “зарядки”. Теперь, даже если “зарядник” вашего шуруповерта сгорел, утонул, потерян или украден, вы найдете выход из положения.
Зарядное Устройство для любого шуруповерта и не только
В этой статье рассмотрим проект универсального источника питания, который может быть использован в качестве зарядного устройства для портативных электроинструментов и не только.
Особенность такого источника заключается в том, что он относительно простой и самое важное имеется стабилизация, как выходного напряжения, так и тока, то есть с его помощью можно заряжать и литий-ионные аккумуляторы.
Проектируя его я ставил задачу сделать универсальное, зарядное устройство для шуруповерта, поэтому диапазон выходного напряжения где-то от 11 до 17 вольт с возможностью регулировки, а ток до 1,3 ампер, также с возможностью регулировки. Этого вполне достаточно для зарядки наиболее ходовых электроинструментов 12, 14,4 и 16,8 вольта, но как уже сказал схема универсальна, выходное напряжение и ток можно сделать иными.
Устройство питается непосредственно от сети, снабжены всеми необходимыми защитами, включая защиту от коротких замыканий и перегрева.
Схема состоит из двух основных частей, сетевого понижающего импульсного блока питания и узла стабилизации тока и напряжения, за счет импульсного принципа преобразования устройство имеет высокий кпд, малые размеры и вес.
Источник питания построен на основе специализированной микросхемы TNY267 или 268, именно от выбора микросхемы зависит мощность зарядного устройства — это целая линейка специализированных микросхем, которые находят широкое применение во всевозможных зарядных устройствах и адаптеров питания.
Самая мощная из этой линейки TNY268 на основе которой можно построить блоки с мощностью до 23 ватт, фактически схема сетевого преобразователя может быть любой, хоть на сотни ватт, если в этом есть необходимость, важно чтобы преобразователь имел линию обратной связи.
Как мы знаем, для того чтобы обеспечить полноценную стабилизацию тока и напряжения, шим контроллер, на основе которого построен преобразователь, должен иметь два усилителя ошибки, например TL494. Особенностью нашей схемы является то, что стабилизация тока и напряжение реализованы через один единственный канал обратной связи, но вернемся к нашей микросхеме TNY268 — она выбрана неспроста, во-первых блоки питания на основе данных микросхем имеют минимальную обвязку и самое главное импульсный трансформатор имеет всего две обмотки, сетевая и вторичная.
Дополнительной обмотки мотать в данном случае не нужно, к тому же в самой микросхеме уже есть всё необходимое для работы, включая полноценный шим контроллер, система защиты и даже силовой транзистор это удобно и дешево.
Я сделал несколько источников питания используя микросхемы, как TNY267 так и 268, работают аналогично хорошо.
Вторая часть зарядки состоит из сдвоенного операционного усилителя lm358, источника опорного напряжения tl431 и мелочевки, имеется пара подстроечных резисторов для регулировки тока и напряжения.
Этот узел наиболее важен, поскольку им можно дополнить любой другой блок питания любой мощности и получить регулируемое по току и напряжению зарядное устройство.
Давайте подробно рассмотрим, как работает этот узел… Первый канал операционного усилителя задействован для стабилизации тока, второй для напряжения, в схеме стабилизации тока имеется токовый шунт, в нашем случае представляющий собой низкоомный, 2-ватный резистор R6.
Опорное напряжение 2,5 вольта задается микросхемой tl431, тут она работает чисто как стабилитрон. Резистор R15 задаёт ток стабилизации, в зависимости от запланированного выходного напряжения необходим пересчёт данного резистора таким образом, чтобы ток стабилизации был в районе 5-10 максимум 20 миллиампер — плюс минус.
Опорное напряжение, через резистивный делитель, подается на инверсный вход операционного усилителя, притом важно заметить что один из резисторов делителя — подстрочный, вращая его мы можем изменять опорное напряжение на инверсном входе операционника.
На прямой вход, того же канала операционного усилителя поступает падение напряжения с датчика тока, при подключении нагрузки на выход источника по шунту будет протекать определенный ток, что приведет к образованию падения напряжения на нём — это напряжение поступит на прямой вход операционного усилителя, где оно будет сравнено с опорным напряжением на другом входе, если падение напряжения на шунте большие опорного напряжения, на выходе операционного усилителя получим высокий уровень — засветятся соответствующий светодиод и одновременно светодиод оптопары, которая задействована тут в цепи обратной связи.
Микросхема TNY моментально отреагирует на это и её внутренней транзистор меньше времени будет находиться в открытом состоянии, следовательно меньше мощности пойдет в трансформатор.
Разумеется при этом уменьшится ток во вторичной цепи, следовательно уменьшится падение напряжения на датчики тока до тех пор, пока напряжение на входах операционного усилителя не уравняться. Точно таким же образом работает функция стабилизации напряжения, которая построена на втором канале операционного усилителя, только на сей раз с опорным напряжением сравнивается часть выходного напряжения, свечение 2 светодиода говорит о том, что блок работает как стабилизатор напряжения, то есть наш источник работает либо, как стабилизатор напряжения, поддерживая выставленное, выходное напряжение, либо в качестве стабилизатора тока, ограничивая выходной ток на заданном уровне, но тут есть один недостаток о котором поговорим в конце.
Подстроечные резисторы — позволят изменять выходные параметры, делители в опорных цепях и датчик тока, рассчитаны именно для указанных параметров, если вам нужны иные значения напряжения и тока придётся пересчитать опорные цепи, но перед тем, как это сделать нужно понять, что всё упирается в мощность преобразователя и выше 23 ватт снимать нельзя, если использована микросхема TNY268 и имеется хорошее охлаждение.
Используя закон ома можно понять позволит ли микросхема построить источник с вашими требованиями, если нет, то можно использовать иную, более мощную схему преобразователя, а узел стабилизации и тока оставить этот.
Трансформатор, сперва важно указать, что наша микросхема работает на фиксированной частоте в 132 килогерца, в моём источнике применен ШЕ-образный, ферритовый трансформатор с начальная проницаемостью 2300, данные намотки указаны именно для этого трансформатора, в случае иных сердечников, обмотки нужно пересчитать, сделать это можно с помощью специализированных программ и приложений для расчета трансформаторов, однотактных обратно-ходовых источников питания.
Необходимо также заметить о наличии не магнитного зазора между половинками сердечника, в данном случае зазор около 0,3-0,4 миллиметров.
Как на плате, так и на схеме, точками указаны начала намотки обмоток, если перепутать, работать схема не будет. Для того, чтобы ничего не путать начало намотки желательно промаркировать, например одевая термоусадку на провод.
Обмотки мотаются в одинаковом направлении, например по часовой стрелке, для начала на голой каркас мотается половина первичной обмотки, вообще можно и всю обмотку сразу, но так правильнее. Обмотку мотаем послойно, каждый слой изолируем, например карбоновым, термостойким скотчем, одного-двух слоев изоляция хватит.
После намотки и половины первичной обмотки мотаем всю вторичную обмотку целиком, тоже послойно, если она полностью не влезет в один ряд, далее поверх вторичной обмотки ставим изоляцию слоев так 3-4 и мотаем остальную половину первичной обмотки, тем же способом, что и первую половину.
В итоге у нас получается четыре отвода от первичной обмотки, каждые два провода являются цельной обмоткой и начало каждой обмотки мы промаркировали, теперь берём начало одной обмотки и соединяем с концом другой, получим отвод, который в схеме использоваться не будет, как итог мы получаем одну, цельную, первичную обмотку.
Теперь необходимо собрать трансформатор, не забывая о зазоре между половинками сердечника, для получения зазора можно взять к примеру чек от банкомата, вырезать полоску, сложить вдвое и установить под центральным или крайними краями сердечника.
Далее, стягиваем половинки сердечника скотчем и устанавливаем трансик на плату.
После полной проверки схемы на работоспособность, половинки сердечника для надежности, можно заклеить клеем.
Выходной дроссель в моем случае намотан на ферритовой гантельки и имеет индуктивность около 15 микрогенри, использован провод 0,7 миллиметров, но практика показала, что дроссель можно вовсе исключить, просто поставив перемычку, на работу это никак не повлияло.
То же самое можно сказать и о сетевом фильтре, так как блок маломощный, особо сильно гадить в сеть он не будет, но естественно с фильтром — правильней.
Идём дальше, в делителях напряжения необходимо использовать точные и стабильные резисторы с допуском 1 процента и меньше, но в любом случае будет некоторый разброс и идеально рассчитать выходное напряжение и ток довольно трудно, но в схеме у нас имеются подстроечные резисторы, которые позволят очень точно выставить выходные параметры источника.
Используя этот принцип можно пересчитать блок под ваши нужды, снять больший ток, большее напряжение, да хоть пуско-зарядное можно сделать, но о нём поговорим в следующих статьях.
Введите электронную почту и получайте письма с новыми поделками.
Если устройство будет работать в герметичном корпусе, без вентиляционных отверстий, то мощность источника необходимо снизить, а на микросхему с применением теплопроводящего клея желательно приклеить небольшой теплоотвод.
Недостатком данных схем является то, что стабилизация тока работать не будет, если на выход схемы не подключен заряжаемый аккумулятор, это происходит по той причине, что при подключении нагрузки, схема автоматически уменьшает выходное напряжение, чтобы поддерживать заданный ток, в какой то момент выходного напряжения становится недостаточным для питания операционного усилителя и опорного источника.
Если же к выходу подключён аккумулятор, то ранее упомянутые узлы будут питаться от самого аккумулятора, то есть выставить ток заряда необходимо только при подключенном аккумуляторе, именно аккумулятор, а не другая нагрузка.
Фактически вторую часть схемы можно прикрутить к любому импульсному источнику с обратной связью.
Как происходит зарядка думаю вы уже поняли, в холостую без подключенного аккумулятора вращением резистора R11 нужно выставить напряжение окончания заряда, например для трёх последовательно соединенных банок литий-ионных аккумуляторов — это напряжение составляет 12,6 вольта.
В холостую у нас будет светиться зеленый светодиод, что говорит о работе блока в режиме стабилизации напряжения, далее подключается разряженный аккумулятор, вращением подстрочника R5, выставляем ток заряда. При этом зеленый светодиод потухнет и засветится красный, блок работает в режиме стабилизации тока по мере заряда аккумуляторной батареи, когда ток будет меньше, чем за данный лимит, красный светодиод потухнет и засветится зеленый.
Важно, выходное напряжение такого источника не должно быть выше 32 вольт — это максимальное питающее напряжение для lm358, который запитан напрямую с выхода источника питания.
Минимальное, выходное напряжение может быть в районе 3 — 3,5 вольт, но лучше сделать от 5 — 6 вольт, если в этом есть необходимость.
Изготовление устройства зарядного для шуруповёрта своими руками
При использовании шуруповёрта пользователи часто сталкиваются с повреждением зарядного устройства (ЗУ). В первую очередь это связано с нестабильностью параметров электрической сети, к которой подключается устройство заряда, а во вторую — с выходом из строя аккумуляторной батареи. Решается эта проблема двумя способами: покупкой нового зарядного устройства для шуруповёрта или его самостоятельным ремонтом.
Виды зарядных устройств
Популярность шуруповёрта вызвана тем, что он упрощает процесс закручивания или выкручивания различного крепёжного элемента. Характеризуясь мобильностью и небольшими размерами, он незаменим при сборке мебельных конструкций, разборке техники, кровельных и других строительных работах. Своей мобильностью инструмент обязан входящим в его конструкцию аккумуляторным батареям.
Достоинство применения аккумуляторов в возможности их неоднократного использования. Аккумуляторы, отдавая накопленную энергию устройству, периодически сами нуждаются в подзарядке. Для восстановления величины их ёмкости и служат зарядные устройства.
Зарядка аккумулятора шуруповёрта происходит двумя способами: встроенным или внешним зарядным прибором. Встроенное ЗУ позволяет заряжать батарею, не извлекая её из шуруповёрта. Схема восстановления ёмкости расположена непосредственно вместе с аккумулятором. В то время как выносное подразумевает их извлечение и установку в отдельное приспособление для заряда. Различают ЗУ по типу восстанавливаемых батарей. Применяемые аккумуляторы бывают:
- никель-кадмиевые (NiCd);
- никель-металл-гидридные (NiMH);
- литий-ионные (LiIon).
Конечная стоимость шуруповёрта не в последнюю очередь зависит от типа используемых батарей и возможностей зарядного устройства. ЗУ выпускаются на 12 вольт, 14,4 вольта и 18 вольт. Кроме этого, ЗУ разделяются по возможностям и могут иметь:
- индикацию;
- быструю зарядку;
- разный тип защиты.
Наиболее используемые ЗУ используют в работе медленный заряд, обусловленный малым током. Они не содержат в своей конструкции индикацию работы и не отключаются автоматически. Это более справедливо к встроенным приборам восстановления ёмкости. ЗУ, построенные на импульсных схемах, обеспечивают возможность ускоренного заряда. Они автоматически отключаются по достижению требуемой величины напряжения или в случае возникновения аварийной ситуации.
Типы применяемых батарей
Никель-кадмиевые аккумуляторы не испытывают проблем при заряде в ускоренном режиме. Такие батарейки обладают высокой нагрузочной способностью, невысокой ценой и спокойно переносят работы при минусовой температуре. К недостаткам относят: эффект памяти, токсичность, большую скорость саморазряда. Поэтому перед тем, как заряжать такого типа аккумулятор, его необходимо полностью разрядить. Батарея имеет высокую степень саморазряда и быстро разряжается, даже если её не используют. В настоящее время практически не выпускаются из-за своей токсичности. Из всех типов обладают наименьшей ёмкостью.
Никель-металл-гидридные по всем параметрам превосходят NiCd. У них меньше величина саморазряда, меньше выражен эффект памяти. При одинаковых размерах они имеют большую ёмкость. В их составе нет токсичного материала, кадмия. В ценовой категории этот тип занимает среднее положение, поэтому наиболее распространённый тип ёмкостных элементов в шуруповёрте именно он.
Литий-ионные характеризуются высокой ёмкостью и низким значением саморазряда. Эти аккумуляторы плохо переносят перегрев и глубокий разряд. В первом случае они способны взорваться, а во втором уже не смогут восстановить свою ёмкость. Они также способны работать при отрицательных температурах и не имеют эффекта памяти. Использование ЗУ с микроконтроллером позволило защитить батарею от перезаряда, тем самым сделав этот тип наиболее привлекателен к применению. По цене они дороже, чем первые два типа.
Кроме этого, основной характеристикой аккумуляторных батарей, является их ёмкость. Чем выше этот показатель — тем дольше работает шуруповёрт. Единица измерения ёмкости — миллиампер в час (мА/ч). Конструкция батареи заключается в последовательном соединении элементов питания и помещение их в общий корпус. Для Li-Ion напряжение на одном элементе составляет 3,3 вольта, для NiCd и NiMH — 1,2 вольта.
Принцип работы ЗУ
При выходе из строя ЗУ есть смысл сначала попробовать его восстановить. Для проведения ремонта желательно иметь схему прибора заряда и мультиметр. Схемотехника многих приборов заряда построена на микросхеме HCF4060BE. Её схема включения формирует выдержку интервала времени заряда. Она включает в себя цепь кварцевого генератора и 14-разрядный двоичный счётчик, благодаря чему на ней легко реализовывается таймер.
Принцип работы схемы зарядника проще разобрать на реальном примере. Вот как выглядит она в шуруповёрте Интерскол:
Такая схема предназначена для заряда 14,4-вольтовых аккумуляторов. Она имеет светодиодную индикацию, показывающую подключение в сеть, горит светодиод LED2, и процесс заряда, горит LED1. В качестве счётчика используется микросхема U1 HCF4060BE или её аналоги: TC4060, CD4060. Выпрямитель собран на силовых диодах VD1-VD4 типа 1N5408. Транзистор PNP типа Q1 работает в ключевом режиме, к его выводам подключены управляющие контакты реле S3-12A. Работой ключа управляет контроллер U1.
При включении ЗУ переменное напряжение сети 220 вольт через предохранитель поступает на понижающий трансформатор, на выходе которого её значение составляет 18 вольт. Далее, проходя через диодный мост, выпрямляется и попадает на сглаживающий конденсатор C1 ёмкостью 330 мкФ. Величина напряжения на нём равна 24 вольта. Во время подсоединения батареи контактная группа реле находится в разомкнутом положении. Микросхема U1 запитывается через стабилитрон VD6 постоянным сигналом равным 12 вольт.
Когда кнопка «Пуск» SK1 нажата, на 16-й вывод контроллера U1 поступает стабилизированный сигнал через резистор R6. Ключ Q1 открывается и через него поступает ток на выводы реле. Контакты прибора S3-12A замыкаются и начинается процесс зарядки. Диод VD8, включённый параллельно транзистору, защищает его от скачка напряжения, вызванного отключением реле.
Используемая кнопка SK1 работает без фиксации. При её отпускании всё питание поступает через цепочку VD7, VD6 и ограничительное сопротивление R6. И также питание подаётся на светодиод LED1 через резистор R1. Светодиод загорается, сигнализируя, что начат процесс заряда. Время работы микросхемы U1 настроено на один час работы, после чего питание снимается с транзистора Q1 и, соответственно, с реле. Его контактная группа разрывается и ток заряда пропадает. Светодиод LED1 гаснет.
Этот прибор заряда оборудован схемой защиты от перегрева. Реализуется такая защита с помощью датчика температуры — термопара SA1. Если во время процесса температура достигнет значения более 45 градусов Цельсия, то термопара сработает, микросхема получит сигнал и цепь заряда разорвётся. После окончания процесса напряжение на клеммах батареи достигает 16,8 вольт.
Такой способ зарядки не считается интеллектуальным, ЗУ не может определить, в каком состоянии находится батарея. Из-за чего продолжительность работы шуруповёрта от аккумулятора будет уменьшаться в связи с развитием у него эффекта памяти. То есть ёмкость аккумулятора каждый раз после заряда снижается.
Самодельные приборы для заряда
Самостоятельно сделать зарядку для шуруповёрта на 12 вольт своими руками, по аналогии с той, что применяется в ЗУ Интерскол, довольно просто. Для этого потребуется воспользоваться способностью термореле разрывать контакт при достижении определённой температуры.
В схеме R1 и VD2 представляют собой датчик прохождения тока заряда, R1 предназначен для защиты диода VD2. При подаче напряжения транзистор VT1 открывается, через него проходит ток и светодиод LH1 начинает светиться. Величина напряжения падает на цепочке R1, D1 и прикладывается к аккумулятору. Ток заряда проходит через термореле. Как только температура аккумулятора, к которому подключено тепловое реле, превысит допустимое значение, оно срабатывает. Контакты реле переключаются, и ток заряда начинает протекать через сопротивление R4, светодиод LH2 загорается, сообщая об окончании заряда.
Схема на двух транзисторах
Ещё одно простое устройство можно выполнить на доступных элементах. Эта схема работает на двух транзисторах КТ829 и КТ361.
Величина тока заряда управляется транзистором КТ361 к коллектору, которого подключён светодиод. Этот транзистор также управляет состоянием составного элемента КТ829. Как только ёмкость батареи начинает увеличиваться, ток заряда уменьшается и светодиод соответственно плавно гаснет. Сопротивлением R1 задаётся максимальный ток.
Момент полного заряда батареи определяется необходимым напряжением на ней. Требуемая величина выставляется переменным резистором на 10 кОм. Чтобы её проверить, понадобится поставить вольтметр на клеммах подключения батареи, не подключая её саму. В качестве источника постоянного напряжения используется любой выпрямительный блок, рассчитанный на ток не менее одного ампера.
Использование специализированной микросхемы
Производители шуруповёртов стараются снизить цены на свою продукцию, часто это достигается путём упрощения схемы ЗУ. Но такие действия приводят к быстрому выходу из строя самой батареи. Применяя универсальную микросхему, предназначенную именно для ЗУ компании MAXIM MAX713, можно добиться хороших показателей процесса заряда. Вот как выглядит схема зарядного устройства для шуруповёрта на 18 вольт:
Микросхема MAX713 позволяет заряжать никель-кадмиевые и никель-металл-гидридные аккумуляторы в режиме быстрого заряда, током до 4 C. Она умеет отслеживать параметры батареи и при необходимости снижать ток автоматически. По окончании зарядки схема на основе микросхемы практически не потребляет энергии от аккумулятора. Может прерывать свою работу по времени или при срабатывании термодатчика.
HL1 служит для индикации питания, а HL2 — для отображения быстрого заряда. Настройка схемы заключается в следующем. Для начала выбирается зарядный ток, обычно его значение составляет величину равную 0,5 C, где C — ёмкость аккумулятора в амперчасах. Вывод PGM1 соединяется с плюсом напряжения питания (+U). Мощность выходного транзистора рассчитывается по формуле P=(Uвх — Uбат)*Iзар, где:
- Uвх – наибольшее напряжение на входе;
- Uбат – напряжение на аккумулятор;
- Iзар – зарядный ток.
Сопротивление R1 и R6 рассчитывается по формулам: R1=(Uвх-5)/5, R6=0.25/Iзар. Выбор времени, через которое зарядный ток отключится, определяется подключением контактов PGM2 и PGM3 к разным выводам. Так, для 22 минут PGM2 оставляется неподключенным, а PGM3 соединяется с +U, для 90 минут PGM3 коммутируется с 16 ногой микросхемы REF. Когда понадобится увеличить время зарядки до 180 минут PGM3 закорачивают с 12 ногой MAX713. Наибольшее время 264 минуты достигается соединением PGM2 со второй ногой, а PGM3 с 12 ногой микросхемы.
Зарядка шуруповёрта без зарядного
Восстановить батарею без помощи ЗУ несложно, но многие не представляют, как. Зарядить аккумулятор шуруповёрта без зарядного устройства можно, используя любой блок питания с постоянным напряжением. Величина его должна быть равной или немного больше значения напряжения заряжаемого аккумулятора. Например, для 12V батареи можно взять выпрямитель для зарядки автомобиля. С помощью клеммных зажимов и проводов подключить, соблюдая полярность, их друг к другу минут на тридцать, при этом контролируя температуру батареи.
А можно провести доработку и устройства питания с большим напряжением, воспользовавшись простым интегральным стабилизатором. Микросхема LM317 позволяет управлять входным сигналом до 40 вольт. Понадобится два стабилизатора: один включается по схеме стабилизации напряжения, а второй — тока. Такую схему можно применить и при переделке ЗУ, не имеющего узлов контроля процесса зарядки.
Работает схема совсем несложно. Во время работы образуется падение напряжения на резисторе R1, его хватает для того, чтобы засветился светодиод. По мере заряда ток в цепи падает. Через некоторое время напряжение на стабилизаторе будет малым и светодиод погаснет. Резистор Rx задаёт наибольший ток. Его мощность выбирается не менее 0,25 ватт. При использовании такой схемы аккумулятор не сможет перегреваться, поскольку устройство автоматически отключается при полном заряде батареи.
Часто можно встретить вредные советы, что зарядить аккумулятор можно, используя диодный мост и лампу накаливания на 100 Вт. Так делать категорически нельзя, потому что отсутствует гальваническая развязка и, кроме смертельного поражения электрическим током, существует большая вероятность взрыва батареи.
Особенности зарядных устройств для шуруповерта
Аккумуляторный шуруповерт значительно упрощает выполнение работ по установке крепежа, тем более что он не привязан к розетке – работать можно даже на улице или в помещениях, где электричества нет. При этом одним из наиболее важных узлов такого агрегата является зарядное устройство, ведь во многом именно от него зависит степень удобства эксплуатации прибора.
Что это такое?
Зарядник для аккумулятора шуруповерта – это устройство, позволяющее восполнить потери энергии батареи, обусловленные эксплуатацией инструмента. Благодаря возможности заряжать аккумулятор многократно сама батарея может иметь сравнительно небольшие размеры и емкость, лишь бы количество циклов перезарядки было большим, а зарядное устройство обеспечивало высокую скорость восстановления первоначального заряда.
Все зарядные устройства глобально можно поделить на 2 класса: встроенные и выносные. В первом случае нет необходимости специально извлекать батарею для зарядки – кабель с электрической вилкой присоединяется прямо к корпусу инструмента (или и вовсе прикреплен к нему на постоянной основе), что довольно удобно. Выносные зарядные устройства – это отдельный механизм, который предполагает извлечение батареи из корпуса шуруповерта, ее вставку в специальный зажим, а уже последний имеет тот же кабель с вилкой и включается в розетку. Каждое из решений имеет собственные преимущества и недостатки, но об этом чуть позже.
Если вышеописанное деление на классы никак принципиально не влияет на работу механизма, то соответствие типа зарядного устройства типу батареи критически важно. Дело в том, что аккумуляторы для электроинструмента даже сегодня выпускаются нескольких видов, каждый из которых имеет собственные особенности работы. Если зарядник не соответствует требуемым параметрам, это может привести к весьма быстрой порче батареи. Чтобы понимать, какими критериями должно обладать зарядное устройство, рассмотрим вкратце особенности всех основных типов аккумуляторов.
- Никель-кадмиевые аккумуляторы сегодня уже встречаются довольно редко – их популярность падает из-за многих факторов, среди которых токсичность содержимого, способность к быстрому саморазряду, высокий вес при сравнительно малом заряде, а также «эффект памяти». Последний критерий означает, что батарея всегда должна быть сначала полностью разряженной, а затем полностью заряженной, если не соблюдать это правило, ее емкость, и без того невысокая, станет снижаться буквально на глазах. Едва ли не единственным огромным плюсом этого типа аккумуляторов является их способность нормально работать при любых низких температурах. При этом они еще и способны выдерживать высокие нагрузки, потому зарядные устройства для них часто делают с возможностью максимально быстрой зарядки – это весьма актуально, раз уж заряжать всегда нужно от 0% до 100%.
- Никель-металл-гидридные батареи считаются улучшенной версией никель-кадмиевых – недостатки в целом повторяются, но выражены все они в заметно меньшей степени. Кроме того, у содержимого таких аккумуляторов не просматривается токсичных составляющих. Преимущества также весьма похожи на те, что были у батарей предыдущего типа, потому эти аккумуляторы встречаются уже значительно чаще, а зарядные устройства для обоих типов весьма похожи. Единственный показатель, в котором металл-гидридные источники питания хуже кадмиевых – это стоимость.
- Литий-ионные аккумуляторы справедливо считаются наиболее современными и лучшими с технической стороны. Они лишены большинства недостатков вышеописанных батарей, например, мало весят при значительном объеме заряда, саморазряжаются на считаные проценты за месяц простоя, совершенно лишены «эффекта памяти». Долгое время их критиковали за несколько ускоренный разряд при работе в условиях мороза, но в последние годы постепенно решается и эта проблема. Правда, недостатки все равно есть, и наиболее высокая стоимость – далеко не единственный. Так, подобную батарею крайне нежелательно разряжать полностью – после этого она может и не восстановить первоначальную емкость, хотя плюс заключается в том, что подзарядить ее можно в любой момент ввиду отсутствия «эффекта памяти». Другой проблемой является вероятность взрыва аккумулятора при перегреве от чрезмерного заряда, потому зарядное устройство для такой батареи обязательно должно быть снабжено микроконтроллером.
Помимо прочего, зарядные устройства могут различаться и по вольтажу – 12, 14,4 или 18 вольт (этот показатель обязательно должен соответствовать рекомендованному в инструкции к шуруповерту). В качестве дополнительных опций предусмотрены специальная возможность ускоренного заряжания, а также индикация уровня заряда и автоматическое отключение в случае полного заряда или некой непредвиденной ситуации. Наличие дополнительных функций отрицательно сказывается на стоимости зарядника.
Принцип работы
Зарядное устройство не стоит воспринимать как простой кабель, позволяющий запитать аккумулятор от электрической розетки – этот прибор всегда несколько сложнее. В зависимости от точного набора функций конкретного экземпляра, устроен он может быть по-разному, однако, в целом методы достижения цели всегда примерно одинаковы. Поскольку зарядить аккумулятор шуруповерта от розетки 220 В напрямую нельзя, ключевой деталью любого зарядного устройства является понижающий трансформатор, обеспечивающий значительное снижение вольтажа. Сам он, как правило, не опускает вольтаж вплоть до нужного значения – ток приобретает необходимые характеристики уже потом, проходя сквозь диодные мосты и микросхемы.
Чтобы вся начинка зарядного устройства, не говоря уж об аккумуляторе или шуруповерте в целом, не сгорела от слишком высокого напряжения в сети электропитания, в самом начале схемы устанавливается предохранитель. Ограничение заряда обычно достигается одним из двух наиболее распространенных способов – либо микроконтроллер замеряет силу тока в аккумуляторе, либо время зарядки ограничено таймером. Первый вариант хорош в случае с литий-ионными батареями, поскольку заряжать их можно в любой момент, а значит, точное время зарядки определить невозможно. При этом чрезмерная зарядка грозит взрывом, потому очень важно, чтобы микроконтроллер был в состоянии определить уровень заряда и вовремя отключить подачу электричества. Таймер хорош для подзарядки разных видов никелевых аккумуляторов – они не боятся чрезмерной зарядки, к тому же перед процедурой должны быть разряжены полностью, потому время заряжания всегда примерно одинаковое.
Ради повышенного удобства эксплуатации некоторые дорогие модели зарядных устройств комплектуют еще и индикаторами, которые обычно представляют собой обыкновенные светодиоды. Нередко они выполняют разные функции – один может демонстрировать факт включения устройства в сеть, другой показывает, что ток не потерялся нигде в микросхемах и поступает в аккумулятор, третьи и вовсе могут указывать примерный уровень заряда, подсвечивая лишь определенную часть линии, в которую они выстроены.
Виды и типы
Существуют и универсальные зарядные устройства для всех типов аккумуляторов, но все же в большинстве случаев лучшим решением будет зарядник, оптимально подходящий под нужды конкретно взятой батареи. Что интересно, многочисленные отзывы указывают на неидеальное соответствие «родных» зарядных устройств, поставляемых в комплекте с самим шуруповертом. Дескать, производители часто экономят на этой детали, из-за чего довольно быстро может сломаться даже новый инструмент. Многие потребители по этой причине предпочитают собирать зарядные устройства самостоятельно, но в этом случае стоит строго придерживаться схемы и соответствия всех деталей.
Со встроенным блоком питания
Встроенный зарядный прибор делает аккумуляторный шуруповерт похожим на сетевой – он просто втыкается в розетку, а при завершении зарядки кабель либо отсоединяется, либо прячется в специальный отсек. Такой аналоговый механизм в основном выполняет функции стабилизатора напряжения, он позволяет производить заряжание аккумулятора, не вынимая его из корпуса прибора. Существенным недостатком такого решения является то, что во время зарядки инструмент нельзя использовать с запасным аккумулятором, поскольку единственное место для батареи уже занято. С другой стороны, вероятность потерять или забыть блок питания минимизируется, поскольку он не представляет собой отдельного механизма и всегда будет под рукой – там же, где и сам шуруповерт.
Учитывая, что замена подобного встроенного блока питания представляет собой существенную проблему, производители обычно стараются делать механизм на совесть, потому проблем с обновлением зарядного устройства возникать не должно – оно окажется довольно долговечным. Необходимость выполнять максимально качественный зарядник приводит к тому, что он становится лучшим решением для литиевого шуруповерта – он может заряжаться в любой момент, а из-за встраивания в крупный корпус не возникает проблем с оснащением агрегата микроконтроллерами для отключения подачи тока.
С внешним блоком питания
Выносной блок питания аналогового зарядного устройства – альтернативное решение тому, что было описано выше. Оно работает принципиально иначе: здесь для зарядки аккумулятор вынимается из корпуса шуруповерта и устанавливается в гнездо самого зарядника, представляющего собой совершенно отдельный механизм. Такое решение кажется неплохим по той причине, что позволяет заряжать один аккумулятор, пока сам шуруповерт работает, питаясь от второго. Этот факт даже во многом нивелирует характерный недостаток – весьма невысокую скорость заряжания у таких устройств, что часто отбрасывает их в категорию бытовых, не рассчитанных на длительную автономную работу.
Именно зарядники такого типа часто оказываются универсальными, нацеленными на работу с разными типами аккумулятора из трех вышеописанных. Так происходит потому, что производители, стремясь обеспечить потребителю максимальный выбор положительных качеств батареи, предлагают в комплекте поставки одновременно литий-ионный и никель-кадмиевый аккумулятор. Наличие отдельного корпуса позволяет встроить в него более сложную схему, позволяющую выставлять необходимые параметры питания для каждого случая, однако, подобное решение, конечно, будет занимать чуть больше места.
Импульсные
Эти зарядные устройства, в противовес двум вышеописанным аналоговым, оказываются и самыми дорогими, и самыми «умными», в связи с чем основной их сферой применения следует считать профессиональные шуруповерты. Как и положено дорогому агрегату, он практически всегда рассчитан на батареи разных типов, а главное – обладает возможностью предельно быстрой зарядки, буквально в течение часа, чтобы минимизировать возможный простой. Для эффективной работы с никель-кадмиевыми батареями, страдающими от «эффекта памяти», такой зарядник обладает еще и функцией быстрой разрядки.
При этом одним из важных преимуществ импульсного зарядного устройства являются его небольшие размеры при быстрой подаче электроэнергии. Теоретически возможно собрать подобное по характеристикам аналоговое решение, что обойдется дешевле, однако, в этом случае габариты зарядника будут примерно сопоставимы с габаритами всего шуруповерта.
Правила зарядки
Чтобы зарядное устройство и аккумулятор в дальнейшем работали правильно, нужно соблюдать определенные правила зарядки. Если в инструкции к шуруповерту об этом написано отдельно, или даже приобретенный аккумулятор или зарядник имеют собственную инструкцию, их обязательно нужно внимательно прочитать и стараться не отклоняться от написанного ни при каких условиях. Например, никель-кадмиевые аккумуляторы обычно требуют предварительного «разгона», для этого их трижды подряд полностью разряжают и заряжают, после каждой разрядки выжидая еще хотя бы 8 часов до повторного заряжания.
По многочисленным отзывам, игнорирование этой рекомендации приводит к тому, что батарея так и не выходит на заявленный объем заряда. Лишь после троекратного прохождения процедуры аккумулятор можно подключить для зарядки и полноценного использования, однако, эксплуатация допустима только после достижения стопроцентного заряда. В дальнейшем повторная зарядка возможна только после достижения нулевого уровня заряда.
С литий-ионными аккумуляторами все намного проще – им не нужен никакой разгон, да и заряжать их можно в любой момент. При этом покупая дешевый зарядник, нужно понимать, что он может и не предусматривать автоматического отключения, и в этом случае в обязанности владельца входит слежение за тем, чтобы батарея не перегревалась, в противном случае не исключен ее взрыв. Рекомендуемая температура для зарядки батарей, кстати, находится в пределах 10-40 градусов выше нуля, вылезать за эти рамки не рекомендуется.
На период простоя батареи желательно извлекать из инструмента, не оставляя внутри корпуса. Сами зарядные устройства стоит приобретать только в специализированных механизмах, экспериментировать в этой сфере, приобретая дешевые китайские блоки, рискованно. Что касается продолжительности процесса зарядки, то этот момент лучше дополнительно проверить в инструкции. Хорошо, если зарядник предполагает автоматическое отключение при достижении нужного уровня, но если нет, возможны сюрпризы, ведь у импульсных зарядных устройств минимальное время зарядки может составлять всего полчаса, а у аналоговых – достигать 7 часов. Если автоматического отключения нет, но есть индикатор уровня заряда, то лучше отключать батарею сразу после достижения 100%, даже если в инструкции написано, что одноразовая передержка не грозит страшными последствиями.
Об особенностях зарядных устройств для шуруповерта смотрите в видео ниже
5 лучших зарядных устройств для шуруповертов
Шуруповерт может стать настоящим помощником при ремонте или сборке мебели. Особенно практичны аккумуляторные модели, которые не ограничивают зону перемещения и не отягощают руку весом кабеля. Но батарея нуждается в регулярной подзарядке, чтобы восполнять емкость энергией, для чего используют специальный блок. Мы подготовили рейтинг лучших зарядных устройств для шуруповретов, в зависимости от их производителя и мощности потребляемого тока, что поможет грамотно выбрать этот элемент, если он сломался или изначально отсутствует в комплекте.
Не забудьте подписаться на наш канал в Telegram.
Лучшие зарядные устройства для конкретных моделей аккумуляторов от шуруповертов
Есть типы аккумуляторов, которые следует заряжать только в устройствах, одобренных производителем, иначе это может сократить срок эксплуатации батареи или вывести ее из строя.
Фирму и модель следует выбирать исходя из названия шуруповерта, чтобы подошло гнездо для вставки и номинальный ток. Вот самые ходовые модели.
MAKITA DC10WA — для тонких обойм BL7010 и BL 1013
Это лучшее зарядное устройство для шуруповертов японской фирмы Макита, имеющих форму обоймы для заведения внутрь ручки. На передней части корпуса предусмотрено постановочное гнездо, имеющее питающие контакты.
Глубина гнезда достаточна для удержания батареи в вертикальном положении. Справа расположен диод с двумя цветами, который информирует об необходимости выключения, процессе зарядки или перегреве аккумулятора.
Плюсы:
- компактные размеры 125х70х220 мм для транспортировки в сумке;
- время заряда всего 30 минут;
- подходит для моделей с напряжением 7,2-10.8 В;
- масса 500 грамм;
- информирование о перегреве батареи;
- сообщение о выходе аккумулятора из строя;
- удобная скошенная форма для упора в момент извлечения элемента питания.
Минусы:
- только для типа элементов Li-ion;
- стоимость 2800 рублей.
Bosch AL 1130 CV — с автоматической регулировкой питания обоймы
Такое оборудование будет самостоятельно регулировать ток, чтобы зарядить аккумулятор шуруповерта до максимального значения.
Блок совместим с тонкими обоймами немецкого бренда, работающими от напряжения 10.8 В, но только в линейке с элементами Li-ion. Сзади на корпусе значительная часть крышки снабжена прорезями для удаления горячего воздуха.
Информационные индикаторы размещены спереди, чтобы быть хорошо видными пользователю. Место вокруг гнезда приподнято, что позволяет легко упираться пальцами в остальную часть для извлечения батареи.
Плюсы:
- быстрая зарядка за 30 минут;
- автоматическое отключение подачи тока при перегреве;
- устойчивая постановка обоймы в гнездо благодаря высоким бортикам;
- масса 500 грамм;
- маленькие габариты 210х130х80 мм;
- индикация вынесена на перед и хорошо видна издалека;
- длинный провод для подключения к розетке.
Минусы:
- совместим только с типом Li-ion;
- цена 2600 рублей;
- напряжение только 10.8 В.
Лучшие универсальные зарядные устройства для шуруповертов
Такое оборудование применяется для подзарядки независимо от типа элемента, и модуль может подходить к 10-20 видам батарей одного бренда.
Форма посадочного гнезда создается с возможностью принятия аккумуляторов определенной конфигурации, распространенной у данных строительных инструментов. Это может быть обойма, слайдер или несъемные виды.
Ryobi RC18-150 — для обойм от всех типов на 18 В этого бренда
Этот блок питания подойдет к батареям всех типов в форме обоймы, которые имеют показатель напряжения 18 В.
Конструкция зарядного устройства снабжена многочисленными вентиляционными отверстиями, чтобы удалять возникающее тепло от аккумулятора наружу. Справа и слева размещены красный и зеленый диоды, чье отдельное или комбинированное горение сообщает о состоянии и уровне процесса.
Плюсы:
- стильный дизайн, украшающий рабочее место;
- продуманная подпорка для удержания крупных Т-образных батарей;
- прорезиненные края корпуса, чтобы исключить расколы от случайных ударов и падений;
- чтобы зарядить емкость 5 А/ч необходимо 60 минут;
- совместим со всеми брендами, чьи батареи имеют вставную форму и питание 18 В;
- индикатор сообщает о достижении заряда не только в 100%, но и в 80%, что помогает вовремя его отключить и продлить срок использования (при неполном заряде число циклов увеличивается до 3000);
- автоматический контроль температуры;
- подходит к типам элементов питания Li-ion, NiMH, NiCd.
Минусы:
- масса 1,2 кг уже будет чувствоваться в сумке;
- стоимость 3700 рублей;
- крупный габариты 280х75х148 мм.
DEWALT DCB118 — для слайдеров с принудительным охлаждением
Это лучшее зарядное устройство для шуруповретов Dewalt, работающих от напряжения 18 до 54 В. Регулируемый диапазон тока сочетается с принудительной вентиляцией, которая содействует скорейшему охлаждению как самого элемента питания, таки и корпуса аппарата.
Сзади предусмотрены отверстия для крепления на стену, что удобно при постоянном месте работы. Слайдеры вставляются туго и не выпадут, если случайно задеть прибор.
Плюсы:
- легкое отсоединение от гнезда нажатием кнопки;
- понятная индикация о полном и неполном заряде;
- информирование о перегреве;
- перфорация на торцах корпуса для сквозного прохода воздуха;
- диапазон тока от 18 до 54 В;
- 6 А/ч заряжается за 55 минут;
- легкий вес 650 грамм;
- конвертируемый тип, ускоряющий зарядку;
- совместим с любой батареей серии Flexvolt.
Минусы:
- стоимость 3200 рублей;
- крупный корпус 280х220х260мм;
- прибор греется.
Лучшие многопостовые зарядные устройства для шуруповертов
Такой тип оборудования необходим для строительных бригад или мебельной фабрики, где одновременно орудуют 4-8 шуруповертами. Чтобы не загромождать все розетки одиночными устройствами питания применяют многопостовые блоки, которые принимают сразу от 3 до 6 батарей.
Ryobi RC18-627 — на 6 ячеек
Это оптимальное зарядное устройство для мастерской, где одновременно используется множество шуруповретов с напряжением 18 В. Блок содержит 6 ячеек, в которые размещаются обоймы длинным выступом вверх. На корпусе предусмотрена ручка для переноса модуля.
На верхней крышке расположена световая индикация по каждому гнезду. Рядом с ячейками прорезаны вентиляционные отверстия. Аппарат снабжен ножками и защищен от случайно пролитой воды на столе или полу высоким просветом.
Бюджетное зарядное устройство для Li ion аккумуляторов шуруповерта
Чем заряжать, переделанную на Li-Ion батарею шуруповерта. Не все “зарядки” подходят для этого. Для правильного алгоритма заряда Li-Ion аккумуляторов и для увеличения срока их службы штатное зарядное устройство шуруповерта необходимо доработать.Процесс перевода шуруповерта на литий можно посмотреть в этом видео “Высокотоковые аккумуляторы, универсальная BMS в переделке шуруповерта на литий.”
Сейчас решим вопрос с зарядкой.
Плата зарядки с стабилизацией напряжения и ограничения по току.
Как с помощью недорогой платы #CCCV на XL4015E1 или на LM2596, можно превратить любой блок питания в зарядное устройство для Li-Ion батареи шуруповерта. Рассмотрена переделка адаптера с 12вольт на 16,8вольт- этим способом можно из адаптера получить регулируемый от 5 до 24 вольт недорогой бюджетный блок питания. Нужно припаять переменный резистор к регулируемому стабилитрону TL431 согласно схемы.
Схема переделки адаптера.
Далее подключаем плату стабилизации напряжения и ограничения тока. На примере адаптера или штатной зарядки шуруповерта можно сделать зарядное устройство для Li-Ion батареи шуруповерта.
Подробнее в видео
14 ноября 2018 Метки: зарядка лития , аккумуляторы шуруповерта , переделка шурупоповерта на литий , электронные поделки
Метки: зарядка лития, аккумуляторы шуруповерта, переделка шурупоповерта на литий, электронные поделки
Комментарии 31
Войдите или зарегистрируйтесь, чтобы писать комментарии, задавать вопросы и участвовать в обсуждении.
Плата балансировки на нужное количество банок и зарядка от ноута и все.
Такая же фигня есть, только в самодельном лабораторном блоке стоит. Только регулировки тока и напряжения на картинке местами переставлены
то, что описано ниже, также можно реализовать на лёгких импульсных БП, если важна портативность зарядника:
— берём 3шт мощных импульсных БП на 5в (например, платы от зарядников мабил)
— модифицируем их ООС, чтобы они выдавали +4,2в 1-2А (смотря, какой БП попадётся)
— аналогично нижнему варианту, соединяем их выходА каскадно, чтобы получить 0в, +4.2в, +8.4в, +12.6в
а вааще же, по моему опыту, самой грамотной оказалась зарядка по идеологии “заряжаем каждую банку по-отдельности”.
Для чего было проделано следующее:
— в корпус батареи шурика было врезано советское 5-контактное гнездо аудио, к нему были подведены напряжения: 0, +4,2в, +8,4в, +12,6в.
— был изготовлен зарядник на базе: трансформатор ТН-50 с 3мя изолированными обмотками ~6,3в, к каждой обмотке было добавлено: свой выпрямитель, свой стабилизатор на +4,2в с ограничением тока
— все эти стабилизаторы, будучи изначально изолированными друг от друга, по выходАм были соединены каскадно, для получения сл. напряжений: 0, +4.2в, +4.8в, +12.6в, которые были подведены тоже к 5-контактному советскому гнезду аудио на корпусе зарядника.
— был изготовлен шнур 1:1 с 2мя советскими 5-контактными гнёздами с обоих концов.
Работает оно так: соединяю шнуром зарядник с АКБ. Каждый из 3х стабилизаторов зарядника заряжает свою банку в батарее (точнее, по 2банки в параллелль).
Только так удалось победить разбежку банок в батарее. Балансиры не особо помогали.
да… про это я тоже долго думал.
вся беда этих простых зарядок, что они измеряют полное напряжение последовательно соединенных аккумов.
это хорошо лишь для идеально одинаковых по свойствам аккумов.
А это почти нереально.
я тоже думал о нескольких гальванически развязанных модулях зарядки каждого элемента.
балансир, конечно, позволяет выровнять напряжение побаночно и не допустить разбежки. Но всё-таки лучше раздельная зарядка.
если уж лезть в ООС на TL431 первичного БП, то туда же надо было и вводить ООС по току. Тогда бы первичный БП реализовывал бы алгоритм “ограничение тока или напряжения, смотря, что раньше наступит”, и платка на LM2596 будет нафиг не нужна.
вот примерчик реализации такого апгрейда БП 12в
только балансиры, там описанные, оказались неудачными. Удачнее оказались балансиры, сделанные по схеме TL431 с высокоомным делителем + p-n-p транзистор “сверху”.
У меня вопрос!: А СУЩЕСТВУЕТ В ПРИРОДЕ? НА АЛИ ТОМ ЖЕ ГОТОВАЯ ПЛАТА ДЛЯ ЛИТИЯ СО ВСЕМ И РЕГУЛИРОВКАМ И БАЛЛАСТАМИ И СТАБИЛИЗАТОРАМИ ЧТОБЫ НЕ ЛОМАТЬ РУКИ И ГОЛОВУ? а? НУ КУПИЛ ВКЛЮЧИЛ И ВСЁ?
Как сделать зарядное устройство для шуруповёрта?
Часто родное зарядное устройство, входящее в комплект шуруповерта, работает медленно, долго заряжая аккумулятор. Тем, кто интенсивно использует шуруповерт, это очень мешает в работе. Несмотря на то, что в комплект входит обычно два аккумулятора (один установлен в рукоятку инструмента и в работе, а другой подключен к зарядному устройству и находится в процессе зарядки), часто владельцы не могут приспособиться к рабочему циклу аккумуляторов. Тогда имеет смысл изготовить зарядное устройство своими руками и зарядка станет удобнее.
Виды батарей
Аккумуляторы неодинаковы по типам и режимы заряда у них могут быть разными. Никель-кадмиевые (Ni-Cd) батареи являются очень хорошим источником энергии, способны отдавать большую мощность. Однако, по экологическим причинам их производство прекращено и они будут встречаться все реже и реже. Сейчас всюду их вытеснили литий-ионные аккумуляторы.
Сернокислотные (Pb) свинцовые гелевые аккумуляторы имеют неплохие характеристики, но утяжеляют инструмент и поэтому не пользуются особой популярностью, несмотря на относительную дешевизну. Поскольку они гелевые (раствор серной кислоты загущается силикатом натрия), то никаких пробок в них нет, электролит из них не вытекает и ими можно пользоваться в любом положении. (Кстати, и никель-кадмиевые аккумуляторы для шуруповертов тоже относятся к классу гелевых.)
Литий-ионные аккумуляторы (Li-ion) являются сейчас наиболее перспективными и продвигаемыми в технике и на рынке. Их особенностью является полная герметичность ячейки. Они имеют весьма высокую удельную мощность, безопасны в обращении (благодаря встроенному контроллеру заряда!), выгодно утилизируются, являются наиболее экологически чистыми, имеют малый вес. В шуруповертах в настоящее время применяются очень часто.
Режимы заряда
Номинальное напряжение Ni-Cd ячейки 1.2 В. Никель-кадмиевый аккумулятор заряжается током от 0.1 до 1.0 номинальной емкости. Это означает, что аккумулятор емкостью 5 амперчасов можно заряжать током от 0.5 до 5 А.
Заряд сернокислотных аккумуляторов хорошо знаком всем людям, держащим в руках шуруповерт, ведь практически каждый их них еще и автолюбитель. Номинальное напряжение ячейки Pb-PbO2 составляет 2.0 В, а ток зарядки свинцового сернокислотного аккумулятора всегда 0.1 C (доля тока от номинальной емкости, см. выше).
Литий-ионная ячейка имеет номинальное напряжение 3.3 В. Ток заряда литий-ионного аккумулятора, 0.1 C. При комнатной температуре этот ток можно плавно повышать до 1.0 С – это быстрый заряд. Однако, это годится только для тех батарей, которые не были переразряжены. При заряде литий-ионных батарей следует точно соблюдать напряжение. Заряд производится до 4.2 В точно. Превышение резко снижает срок службы, понижение – уменьшает емкость. При зарядке следует следить за температурой. Теплый аккумулятор следует либо ограничить током до 0.1 С, либо отключить до остывания.
ВНИМАНИЕ! При перегреве литий-ионного аккумулятора при зарядке свыше 60 градусов Цельсия возможен его взрыв и возгорание! Не следует слишком полагаться на встроенную электронику безопасности (контроллер заряда).
При заряде литиевой батареи, контрольное напряжение (напряжение окончания заряда) образует приблизительный ряд (точные напряжения зависят от конкретной технологии и указаны в паспорте на батарею и на ее корпусе):
Число элементов | Номинал. напр., В | По паспорту, В | Конец заряда, В |
1 | 3.6 | 3.6 | 4.2 |
2 | 7.2 | 7 | 8.4 |
3 | 10.8 | 10 | 12.6 |
4 | 14.4 | 12 | 16.8 |
5 | 18 | 18 | 21.0 |
Напряжение заряда следует контролировать мультиметром или схемой с компаратором напряжения, настроенным точно на применяемую батарею. Но для “электронщиков начального уровня” реально можно предложить только простую и надежную схему, описанную в следующем разделе.
Зарядное устройство + (Видео)
Зарядное устройство, которое предлагается ниже, обеспечивает нужный зарядный ток для любого аккумулятора из всех перечисленных. Шуруповерты питаются от аккумуляторов с разными напряжениями 12 вольт или 18 вольт. Это неважно, главный параметр зарядного устройства для аккумуляторов – ток заряда. Напряжение зарядного устройства при отключенной нагрузке всегда выше номинального, оно падает до нормы при подключении батареи при заряде. В процессе заряда оно соответствует текущему состоянию аккумулятора и обычно чуть выше номинального в конце заряжания.
Зарядное устройство представляет собой генератор тока на мощном составном транзисторе VT2, который питается от выпрямительного мостика, подключенного к понижающему трансформатору с достаточным выходным напряжением (см. таблицу в предыдущем разделе).
Этот трансформатор должен также иметь достаточную мощность, чтобы обеспечить необходимый ток при длительной работе без перегрева обмоток. Иначе он может сгореть. Ток заряда выставляется регулировкой резистора R1 при подключенном аккумуляторе. Он остается постоянным в процессе заряда (тем постоянней, чем выше напряжение от трансформатора. Примечание: напряжение от трансформатора не должно превышать 27 В).
Резистор R3 (не менее 2 Вт 1 Ом) ограничивает максимальный ток, а светодиод VD6 горит, пока идет заряд. К концу заряда, свечение светодиода уменьшается и он гаснет. Тем не менее, не забывайте про точный контроль напряжения литий-ионных аккумуляторов и их температуру!
Все детали в описанной схеме монтируются на печатной плате из фольгированного текстолита. Вместо диодов, указанных в схеме, можно взять русские диоды КД202 или Д242, они довольно доступны в старом электронном ломе. Располагать детали надо так, чтобы на плате оказалось как можно меньше пересечений, в идеале ни одного. Не следует увлекаться высокой плотностью монтажа, ведь вы собираете не смартфон. Распаивать детали вам будет значительно легче, если между ними останется по 3-5 мм.
Транзистор должен быть установлен на теплоотводе достаточной пощади (20-50 см.кв). Все части зарядного устройства лучше всего смонтировать в удобный самодельный корпус. Это будет самым практичным решением, в работе вам ничто не будет мешать. Но здесь могут возникнуть большие сложности с клеммами и подключением к аккумулятору. Поэтому лучше сделать так: взять старое или неисправное зарядное устройство у знакомых, подходящее к вашей модели аккумулятора, и подвергнуть его переделке.
- Вскрыть корпус старого зарядного устройства.
- Удалить из него всю бывшую начинку.
- Подобрать следующие радиоэлементы:
- Выбрать подходящий размер для печатной платы, помещающейся в корпус вместе с деталями из приведенной схемы, нарисовать нитрокраской ее дорожки по принципиальной схеме, протравить в медном купоросе и распаять все детали. Радиатор для транзистора нужно установить на алюминиевой пластинке так, чтобы она не касалась ни с какой частью схемы. Сам транзистор плотно прикручивается к ней винтиком и гайкой М3.
- Собрать плату в корпусе и припаять клеммы по схеме строго соблюдая полярность. Вывести провод для трансформатора.
- Трансформатор с предохранителем на 0.5 А установить в небольшой подходящий корпус и снабдить отдельным разъемом для подключения переделанного зарядного блока. Лучше всего взять разъемы от компьютерных блоков питания, папу установить в корпус с трансформатором, а маму подключить к диодам мостика в зарядном устройстве.
Собранное устройство будет работать надежно если вы аккуратно и тщательно проделали
(20 оценок, среднее: 3,60 из 5)