Педаль управления дроссельной заслонкой – Журнал про Авто

Электронная педаль газа

Вплоть до конца 1980-х годов у большинства автомобилей было довольно простое управление дроссельной заслонкой. Вы нажали на педаль акселератора, дроссельная заслонка открылась, воздух поступил в двигатель, где он смешался с бензином и сгорел.

Педаль газа с тросиком

Сгорающий газ приводил в движение колеса автомобиля. Если вы хотели ехать быстрее, всё, что вам нужно было сделать, это нажать педаль сильнее — дроссельная заслонка открывалась шире, давая автомобилю больше мощности.

Но электронное управление дроссельной заслонкой, которое называют электронная педаль газа, использует электрические, а не механические сигналы для управления дроссельной заслонкой.

Электронная педаль газа

Давайте разберёмся, для чего это сделали. Из каких элементов состоит электронный дроссель (ЭД), как он работает, какие у него есть преимущества, какие бывают признаки неисправности.

  1. Из чего состоит электронное управление дросселем?
  2. Как работает электронное управление дроссельной заслонкой
  3. Преимущества электронного управления дроссельной заслонкой
  4. Надежность
  5. Безопасность
  6. Экологичность и экономичность
  7. Симптомы неисправности электронного дросселя
  8. Аварийный (отказоустойчивый) режим ЭД

Из чего состоит электронное управление дросселем?

Когда вы нажимаете педаль газа, вместо открытия дроссельной заслонки задействуется модуль педали акселератора, который преобразует силу, с которой вы нажимаете на педаль, в электрический сигнал.

Затем этот сигнал отправляется в электронный блок управления (ЭБУ), который учитывает его, а также внешние сигналы, чтобы открыть дроссельную заслонку для оптимальной эффективности и производительности.

Это сложная система, но она дает много преимуществ с точки зрения износа двигателя, производительности, эффективности и экологии. Однако, как и любая сложная система, она несовершенна, и у водителей много вопросов по ней.

Типичная электронная система управления дроссельной заслонкой обычно состоит из трёх основных частей:

  1. модуль педали акселератора;
  2. привод (электрический моторчик) заслонки;
  3. блок управления двигателем.

При использовании электронной педали акселератора пропадает необходимость в регуляторе холостого хода (РХХ). Теперь обороты ХХ устанавливаются поворотом заслонки тем же моторчиком.

Блок управления двигателем выбирает правильное программное обеспечение на основе информации от датчиков положения педали акселератора, оборотов двигателя, датчика скорости и переключателей круиз-контроля.

Датчик положения педали акселератора

Как работает электронное управление дроссельной заслонкой

По сравнению с тросиковым дросселем в Е-газ добавили две детали:

  1. моторчик вращения заслонки;
  2. второй (контрольный) датчик положения дроссельной заслонки (ДПДЗ №2).

ДПДЗ №2 работает в «противофазе» с первым — его сигнал увеличивается или уменьшается на ту же величину, что сигнал с основного ДПДЗ №1.

Электронные дроссельные заслонки могут отличаться процентом открытия в обесточенном состоянии и типом ДПДЗ.

  • Полностью закрытые в обесточенном состоянии — одна пружина на полное закрытие.
  • Приоткрытые на 5-7% — две пружины, точка равновесия в зоне приоткрытия. Это позволяет двигателю работать на малых оборотах в случае
    полного выхода из строя электроники дросселя. Такие заслонки являются более современными, чем полностью закрытые, с которыми, в случае поломки, двигатель не будет работать совсем.
  • С контактными ДПДЗ — внутри ползунковые переменные резисторы.
  • С бесконтактными ДПДЗ — внутри нет трущихся подвижных контактов, сигнал на выходе формируется электроникой.

Принцип работы Е-газа:

  1. Водитель нажимает на педаль акселератора. Степень нажатия через датчики переводится в электрический сигнал и по проводам передаётся в ЭБУ.
  2. ЭБУ управляет закрытием/открытием заслонки ШИМ-питанием через моторчик. Меняется как скважность ШИМа, так и полярность.
  3. По сигналам с ДПДЗ анализируется положение заслонки и меняется управляющий сигнал при необходимости.
  4. Контролируются ошибки в работе дроссельной заслонки.

Преимущества электронного управления дроссельной заслонкой

Электронные системы управления дроссельной заслонкой могут показаться немного бессмысленными. В конце концов, если механическая система работает, зачем её усложнять?

Надежность

Механические дроссельные системы, поскольку они состоят из множества движущихся частей, подвержены значительному износу. В течение срока службы автомобиля различные компоненты могут изнашиваться.

Электронная система управления дроссельной заслонкой имеет сравнительно немного движущихся частей — она ​​посылает сигналы с помощью электрического импульса, а не движущихся частей. Это снижает износ и объём технического обслуживания.

Безопасность

Е-газ добавляет ряд преимуществ безопасности по сравнению с механическими системами. При механическом управлении степень открытия или закрытия дроссельной заслонки зависит только от действий водителя.

Благодаря ЭД блок управления не только считывает данные, поступающие от ноги водителя, нажимающей на педаль газа, но также проверяет сигналы, поступающие от пробуксовывающих колес, системы рулевого управления и тормозов, помогая исправить ошибку водителя и удержать машину под контролем.

Другими словами, E-GAS может учесть несколько факторов, которые влияют на скорость и управление автомобиля, а не только ногу на педали.

Электронное управление дроссельной заслонкой позволяет интегрировать передовые функций безопасности водителя, такие как адаптивный круиз-контроль, системы блокировки тормозов и электронный контроль устойчивости, делая автомобиль более безопасным в сложных погодных условиях (дождь, снег, гололед и др.).

Кроме того, электронный дроссель реагирует быстрее, чем водитель в ситуации, когда шины не обладают достаточным сцеплением с дорогой, обеспечивая вам безопасность и удерживая машину на дороге.

Экологичность и экономичность

Управление дроссельной заслонкой через ЭБУ позволяет снизить вредные выбросы в атмосферу и повысить экономичность автомобиля. Это достигается благодаря тому, что блок управления учитывает не только нажатие на педаль, но и данные от многих датчиков: скорости, кислорода, температуры и др.

Симптомы неисправности электронного дросселя

Как и любая другая деталь автомобиля, система управления дроссельной заслонкой также может подвергаться повреждениям и износу. Есть признаки и симптомы, на которые следует обращать внимание, чтобы защитить автомобиль от дальнейших повреждений.

Читайте также:  Какой карбюратор лучше поставить на ваз 2107, виды и производители, устройство

  1. У машины могут быть рывки и провалы при ускорении, она может дергаться при разгоне. Возможны пропуски зажигания. Если вы заметили какие-либо из этих симптомов или резкое переключение передач, то возможно есть проблема с электронным дросселем.
  2. Неисправности электронного управления дроссельной заслонкой могут вызывать проблемы при переключении передач. Это может быть ощущение залипания или медленное переключение между передачами. Возможна проблема с выходом из определенной передачи, как будто она застряла.
  3. Ещё одним признаком неисправности ЭД являются проблемы с отображением силовых характеристик. Это означает, что автомобиль будет отображать неправильные данные или данные, которые невозможны в текущей ситуации.
  4. Двигатель может глохнуть без какой-либо видимой причины. Это может быть признаком серьезной проблемы и даже привести к повреждению двигателя, поэтому эту проблему необходимо устранить как можно скорее.
  5. Дополнительным признаком, который может указывать на необходимость проверки Е-газ, является то, что у вас появляются быстрые и непреднамеренные скачки скорости во время вождения. Это большая проблема безопасности, поскольку это может произойти, когда вы позади другой машины или на повороте.
  6. На приборной панели может гореть лампочка Check Engine. Это является признаком какой-то неисправности, обнаруженной ЭБУ. Узнать ошибку и причину неисправности можно с помощью диагностического сканера или адаптера ELM327 с программой Torque.
  7. И последний симптом неисправности электронного управления дроссельной заслонкой — это резкое увеличение расхода топлива. Если вы понимаете, что не можете проехать так же много километров на таком же объёме топлива как раньше, это явный признак того, что нужно сделать диагностику автомобиля.

Аварийный (отказоустойчивый) режим ЭД

Как и большинство сложных систем, электронные системы управления дроссельной заслонкой имеют ряд аварийных режимов (Failsafe Mode). Они предназначены для того, чтобы поддерживать работу системы или обеспечивать безопасное завершение работы, если что-то пойдет не так.

Вообще говоря, при первых признаках проблемы большинство электронных средств управления дроссельной заслонкой закрывают дроссельную заслонку и возвращаются в режим холостого хода.

Так, например, если блок управления двигателем обнаруживает проблему с датчиком, система переходит на холостой ход, предотвращая открытие дроссельной заслонки.

Также в ЭД встроено несколько резервов. Например, датчиков положения используется по две штуки. Если датчик неисправен или два датчика в одном положении передают разные показания, система закрывает дроссельную заслонку, оставляя двигатель на холостом ходу.

Всё это не означает, что в электронных системах управления дроссельной заслонкой нет проблем. Скорее, они были разработаны с рядом аварийных режимов, которые при правильной работе должны предотвратить неожиданное ускорение автомобиля.

В последнее время автопроизводители добавляют еще один аварийный режим: отключение тормозами. Такие ЭД уже доступны на некоторых немецких автомобилях. Они позволяют водителю вмешиваться и блокировать систему дроссельной заслонки. Если Е-газ каким-то образом неисправен и дроссельная заслонка открывается сама по себе, то нажатие на тормоз закроет её.

Электронная дроссельная заслонка

Электронное управление дроссельной заслонкой позволяет ECM (Engine Control Module) регулировать крутящий момент, подстраивая режим работы двигателя под условия движения. Благодаря этому удается снизить расход топлива и количество вредных выбросов в атмосферу. Давайте рассмотрим, как работает электронная дроссельная заслонка, устройство и принцип работы элементов управления.

Компоненты системы

  • Блок управления двигателем (ECM). Определяет по входным сигналам от датчиков положения педали акселератора запрашиваемую водителем мощность двигателя. В соответствии с вычислениями и учетом других параметров управления ДВС (к примеру, требования тормозной системы, АКПП) блок управляет электродвигателем модуля дроссельной заслонки (ДЗ). Основой ECM являются функциональный вычислительный и контрольный вычислительный модули.
  • Модуль педали газа с основным и резервным датчиком положения.
  • Датчик выжима педали сцепления.
  • Датчик нажатия педали тормоза.
  • Дроссельная заслонка с электродвигателем и датчиками положения.
Принцип работы электронной педали газа

До появления электронной педали акселератора нажатие на педаль через систему тяг и тросов приводило к повороту оси ДЗ. Следующим этапом развития инжекторных двигателяей стало отслеживание угла открытия ДЗ с помощью резистивных датчиков положения. В работу двигателя электроника вмешивается только в режиме холостого хода и при активации круиз-контроля.

В системе с электронным перемещением ДЗ механическая связь между заслонкой и педалью отсутствует. Угол нажатия педали отслеживается с помощью датчиков двух типов:

  • контактные измерители. Построены на основе потенциометра со скользящим контактом. Перемещение ползунка по резистивной дорожке ведет к изменению сопротивления в цепи. ЭБУ посылает на датчик опорное напряжение в 5 В. Изменение сопротивления ведет к падению или возрастанию напряжения на сигнальном проводе.

  • Бесконтактные датчики. На корпусе неподвижно закреплены два датчика (Hall IC). На вращающейся оси закреплены магниты. Смещение магнитов ведет к изменению интенсивности магнитного поля, что влияет на выходное напряжение датчика Холла.

Внутри корпуса педального узла всегда размещена пара потенциометров, следовательно, две выходные системы – основная и резервная. При нажатии на педаль меняются оба выходных напряжения. По соотношению уровней сигналов ЭБУ мониторит исправность датчиков. На графике ниже указаны уровни сигналов, используемые на автомобилях Mitsubishi с системой впрыска MPI. Уровни напряжения основного и резервного датчика отличаются в два раза.

На некоторых системах низкий уровень сигнала на резервном датчике будет соответствовать высокому уровню на основном. Соответственно, если на одном измерителе напряжение при нажатии педали падает, то на втором оно должно пропорционально возрасти.

Читайте также:  Промывочное дизельное моторное масло
Дроссельная заслонка с электронным управлением

Модуль дроссельного узла состоит из корпуса, дроссельной заслонки, датчиков положения и электродвигателя постоянного тока. Как и в электронной педали газа, для отслеживания положения ДЗ используется пара контактных либо бесконтактных датчиков на эффекте Холла.

Вращение от статора электродвигателя на ось ДЗ передается через пластиковые шестерни. На корпусе имеется механический ограничитель хода, упираясь в который дроссельная заслонка полностью закрывается. В штатном режиме заслонка полностью никогда не закрыта во избежание закусывания ее в корпусе при нагреве. Ограничитель необходим для адаптации ДЗ, в процессе которой ЭБУ запоминает крайнее положение заслонки в открытом и закрытом состоянии. В штатном режиме заслонка останавливается не доходя до нижнего механического ограничителя.

Функция самодиагностики

В случае отсутствия сигнала с датчиков положения ДЗ заслонка перемещается в аварийное положение, при котором двигатель работает только в режиме повышенного холостого хода (порядка 1500 об./мин). На приборной панели при этом может загореться Check Engine или контрольная лампа EPC.

В случае потери связи с датчиками либо любой аномалии в их показаниях в энергонезависимую память записывается соответствующий код неисправности. Считать ошибки можно через разъем OBD-II с помощью мультимарочного или специализированного сканера. В случае замены, ремонта, связанного с разборкой модуля ДЗ, или чистки узла, необходимо провести адаптацию дроссельной заслонки.

Управление холостым ходом

В системе с электронно-управляемой дроссельной заслонкой отсутствует регулятор холостого хода (РХХ). Его функцию на себя берет электродвигатель ДЗ. Поворачивая заслонку на определенный уровень, ЭБУ дозирует воздух для поддержания оборотов холостого хода. Повышенные обороты холостого хода при прогреве, а также возросшая на двигатель нагрузка (включение кондиционера, фар и прочих мощных потребителей) также компенсируется открытием заслонки.

Базовая частота холостого хода рассчитывается из базовой матрицы с использованием сигнала датчика температуры ОЖ.

Неисправности
  • Загрязнение ДЗ
  • Неисправность контактных датчиков положения. Из-за постоянного движения ползунка в местах контакта с дорожкой на резистивном слое появляются протиры. Характерно, что симптомы неисправности начинают проявлять себя в зоне частичной нагрузки. Также плохой контакт возможен из-за ослабления нажима ползунка, образования на резистивной дорожке отложений. Бесконтактные датчики на эффекте Холла такой особенности не имеют и выходят из строя намного реже.
  • Обламывание, слизывание зубов на пластиковых шестернях. Происходит при долгой эксплуатации авто с грязной дроссельной заслонкой, когда для ее перемещения электродвигателю приходится прилагать большее усилие.
  • Подсос воздуха в месте фиксации оси заслонки в корпусе модуля.
  • Износ щеток, коллектора электродвигателя.

Также не стоит забывать о стандартных проблемах с электропроводкой, окислах в разъемах питания.

Педаль управления дроссельной заслонкой – Журнал про Авто

Бывают фразы, которые на первый взгляд не требуют дополнительных пояснений, а если вдуматься – без пояснений они совершенно ничего не значат. В числе таких фраз – «ошибка по дросселю». Услышишь этакое – вроде бы все понятно. Но на самом деле непонятно ничего. В сегодняшней статье мы исправим это – станет понятно, какие ошибки по дросселю бывают, что их вызывает и какими последствиями грозят.

Что такое дроссельная заслонка и зачем она нужна

Дроссельная заслонка – это механизм, стоящий во впускном воздуховоде двигателя. Задача этого механизма – регулировать количество воздуха, попадающего в двигатель. Дроссельная заслонка обязательно есть на бензиновом двигателе и часто встречается на дизелях. Несмотря на одинаковый принцип работы, задачи в бензиновых и дизельных двигателях принципиально разные.

В бензиновых двигателях заслонка – основной инструмент, управляющий оборотами двигателя. Именно положением заслонки управляет водитель, нажимая на педаль газа. Чем больше она открыта – тем больше воздуха попадает в цилиндры в единицу времени, тем выше обороты, тем выше развиваемая мощность. Состав смеси при этом всегда примерно одинаковый и близок к стехиометрическому – это соотношение воздуха и топлива 14.7:1. При других составах смесь будет гореть неоптимально. Если заслонку убрать из бензинового двигателя, то будет невозможно нормально управлять оборотами.

Другая ситуация в дизельном двигателе. Для нормальной работы дизельного двигателя в общем случае заслонка не нужна. Воздух поступает в дизель без препятствий, а обороты и развиваемая мощность зависят исключительно от количества топлива, подаваемого в цилиндры. И водитель, нажимая на педаль газа в дизельном автомобиле, управляет не положением дроссельной заслонки, а количеством подаваемого топлива. При этом заслонки на дизелях все же бывают, но выполняют совершенно другие функции. Очень упрощенно, их две: во-первых, блок управления может полностью закрывать заслонку, чтобы заглушить двигатель (штатно или в аварийном режиме – не столь важно); во-вторых, если прикрыть заслонку, то в пространстве между заслонкой и цилиндром возникнет разрежение, которое будет способствовать улучшению рециркуляции отработавших газов (EGR).

Все, что будет сказано ниже, касается только бензиновых двигателей. О заслонках в дизельном двигателе будет выпущена отдельная статья и сопровождающее видео.

Конструкция заслонки

Вот как выглядит заслонка, если не обращать внимания на обвязку и привод. Это просто пластина (чаще всего металлическая, но на многих современных авто бывает и пластиковая), поворачивающаяся внутри воздуховода на оси:

Читайте также:  Изготовление коробок передач автомат: ведущие производители акпп в мире - Движок Мастер

Конструкция заслонки за годы эволюции автомобилей претерпела немало изменений, но касались они в основном ее привода.

Заслонки с механическим приводом

Изначально педаль газа была соединена с заслонкой тросиком. Так было сделано задолго до появления инжекторных систем, электронного управления и прочих современных достижений современной конструкторской мысли. С появлением электронного-управляемого впрыска привод заслонки остался механическим, но заслонка была дополнена датчиком положения, показания которого стал учитывать блок управления, а сам впускной тракт дополнили регулятором холостого хода (РХХ) – механизмом, пускающим воздух в обход заслонки, когда она полностью закрыта. Принципиальная схема такой системы выглядит так:

В таких системах сигнал с датчика положения заслонки используется в двух целях. Во-первых, это признак холостого хода двигателя – по нему блок управления понимает, нужно ли открывать РХХ. Во-вторых, по скорости нажатия на педаль газа блок управления понимает, хочет ли водитель ускориться резко – и если да, то дополнительно обогащает смесь.

Ключевой роли датчик положения заслонки в таких системах не играет. Его можно вовсе отключить, и почти не почувствовать разницы. Блок управления зарегистрирует код ошибки (например, P0120), но в целом двигатель продолжит работать штатно, хотя возможно, по ощущениям мотор станет чуть «тупее» – как раз из-за того, что блок управления перестанет понимать, насколько быстро необходимо ускориться, и не будет дополнительно обогащать смесь. Возможны и дополнительные эффекты, например, на автомобиле Jeep Grand Cherokee поколения WJ (1999-2005 год выпуска) с двигателем 4.0 отсутствие сигнала с датчика положения заслонки приводило к тому, что АКПП переводилась в аварийный режим и не переключалась выше третьей передачи. Тем не менее, самому двигателю этот датчик был не слишком важен.

Заслонки с электроприводом

Со временем экологические нормы ужесточались. Одна из особенностей механического привода заслонки с этими нормами не уживалась. При резком нажатии на педаль газа заслонка также открывалась очень быстро. Это приводило к резкому повышению давления во впуске. Из-за этого бензин из топливовоздушной смеси конденсировался и не сгорал, фактически «вылетая в трубу» – что не слишком хорошо с точки зрения экологии. Кроме того, заслонку с механическим приводом сложнее увязать с электронно-управляемыми АКПП и другими системами. По совокупности причин автопроизводители перешли на заслонку с электроприводом. В этом случае прямой механической связи между заслонкой и педалью акселератора нет, блок управления сам открывает заслонку на нужный угол, исходя из показаний датчика положения педали акселератора. Такой механизм сделал ненужным РХХ, несколько упростив конструкцию.

Блок управления получает показания с датчика положения педали акселератора, получая «желаемое» значение заслонки, получает показания с датчика положения заслонки, получая фактическое положение, и на основании этого решает, какое управляющее воздействие надо подать на электропривод заслонки. Исходя из этой же совокупности факторов решается и вопрос о необходимости дополнительного обогащения смеси. Если педаль газа отпущена, блок управления при необходимости самостоятельно приоткрывает заслонку на угол, необходимый для поддержания стабильных оборотов ХХ.

Каждый из датчиков положения в такой системе дублируется, и это критически важный факт, так как при отсутствии достоверного сигнала с педали акселератора блок управления просто не поймет, на какой угол надо открывать заслонку, а при отсутствии достоверного сигнала с датчика положения заслонки – не поймет ее текущего состояния. Поэтому в ситуации с ошибкой по одному из датчиков блок управления, в целом, вполне имеет право перейти в аварийный режим – не исключено, что для того, чтобы мотивировать водителя поскорее решить возникшую проблему.

«Гибридный» привод

На некоторых автомобилях, например, Chevrolet Lacetti, привод заслонки осуществляется тросиком, однако при полностью отпущенной педали газа заслонка управляется электроприводом для поддержания холостого хода. Принципиальная схема такой системы выглядит так:

Сложно сказать, какие выгоды несет в себе использование такой конструкции – РХХ конструктивно проще, чем заслонка с электроприводом. Можно предположить, что в конечном итоге такая конструкция получается дешевле за счет унификации впускного тракта, но достоверной информации на этот счет нет.

Мы будем обсуждать только конструкцию с полностью электронным приводом, как используемую во всех современных автомобилях, отвечающих актуальным экологическим нормам.

Хотя, как уже говорилось выше, показания датчиков положения в такой системе и дублируются, тем не менее, показания одного датчика не совпадают с другим, а находятся в определенной зависимости. Как правило, применяется одна из двух схем.

  1. Уровень сигнала одного датчика ровно в два раза выше уровня сигнала со второго датчика. Так, например, сделано у датчиков положения педали акселератора на автомобилях Nissan:

2. Уровни сигналов с двух датчиков в сумме равны 5 В, независимо от положения. Так устроены датчики положения заслонки на автомобилях VAG:

Теперь с помощью Motordata OBD посмотрим на то, как это реализовано в автомобиле Mitsubishi Outlander XL с двигателем 6B31 (трехлитровый бензиновый V6). Здесь установлена заслонка с полностью электронным приводом.

Вот так выглядят сигналы с датчиков положения заслонки. Видно, что их сумма в каждый момент времени равна 5 В

Вот так выглядят сигналы с датчиков положения педали. Видно, что в каждый момент времени сигнал с одного датчика ровно в два раза выше сигнала с другого датчика.

И заведем автомобиль. Как ни странно, он заводится совершенно штатно, и даже абсолютно нормально реагирует на прогазовку – вплоть до 2500 об./мин, когда начинает «захлебываться». Впору подумать, что японцы умудрились реализовать беспроводное управление заслонкой. Но на самом деле, конечно, все проще – при невозможности управлять заслонкой, блок управления дополнительно обогащает смесь, о чем наглядно свидетельствует характерный запах выхлопа.

Читайте также:  Замена масла в коробке вариатор что нужно знать

Теперь глушим автомобиль и снова подключаемся через Motordata OBD. Видно, что блок управления зарегистрировал ошибки P0123 и P0222 по цепям датчиков положения заслонки. Или датчиков положения педали – стандарт OBD в этом смысле безжалостен и конкретнее ошибку не описывает:

В данном случае мы ее создали – мы ее и удаляем, предварительно устранив причину, то есть, надев разъем. А в целом, поиск такой причин такой ошибки относится к числу простых неисправностей – надо последовательно убедиться в целостности проводки от блока управления до заслонки, в наличии «земли» и питания (+5В) на разъеме датчика, а после – проверить сам сигнал. В идеале, конечно, это делается с помощью осциллографа, который позволит убедиться в отсутствии «шумов», но в большинстве случаев достаточно и мультиметра. Хотя в сущности проверка сводится лишь к необходимости убедиться, что виновата не проводка – поменять датчик отдельно чаще всего нельзя, а заслонка в сборе стоит слишком дорого, чтобы менять ее, опираясь только на код ошибки. Все то же самое применимо и к датчику положения педали акселератора.

Адаптация заслонок

Пару слов надо сказать о такой сущности, как адаптация. Управление электроприводом заслонки в бензиновом моторе – задача нетривиальная, так как необходимо очень точное позиционирование заслонки. При этом необходимо учитывать ряд факторов, все из которых известны только авторам управляющего ПО в блоке управления. Совершенно точно учитывается жесткость пружины, возвращающей заслонку в закрытое положение. Кроме того, на заслонку действует поток воздуха, проходящий в двигатель – это усилие также изменяется, и его также необходимо учитывать при управлении электроприводом.

Для корректной работы заслонки блок управления учитывать параметры, свойственные конкретному экземпляру заслонки. Эту процедуру в обиходе называют «адаптацией заслонки», хотя фактически, конечно, саму заслонку ни к чему не адаптируют. Наоборот, адаптируется блок управления к параметрам заслонки. Например, он вводит поправочный коэффициент для жесткости пружины. Его он оценивает, «взводя» заслонку в полностью открытое положение, отключая электродвигатель и замеряя время возвращения заслонки из полностью открытого в полностью закрытое положение. Тогда же, вероятно, снимаются значения датчиков, соответствующие полностью открытому и полностью закрытому положению заслонки.

При работе двигателя через заслонку проходит не только воздух, но также и картерные газы из системы вентиляции. Несмотря на то, что они предварительно проходят маслоотделитель, какое-то микроскопическое количество масла в них остается. Все это оседает на заслонке, постепенно изменяя проходное сечение воздуховода при «почти полностью» закрытой заслонке – иными словами, в режимах холостого хода.


Загрязненная дроссельная заслонка

Блок управления учитывает и это. Поэтому процедура адаптации требуется не только при замене заслонки, но также и после ее чистки. На многих автомобилях процедура адаптации может быть выполнена без использования сканера, с помощью определенной последовательности действий. Более того, на некоторых автомобилях именно такая процедура является штатной и официально рекомендуемой в технологических инструкциях (в частности, на Lada X-Ray).

Ремонт дроссельных заслонок

Поскольку электронная заслонка – механизм сложный, то и неисправностей у него может быть много. Вероятно, самая частая – выход из строя датчиков положения, как правило, из-за того, что протирается дорожка потенциометра. Нередко изнашиваются зубья на шестернях привода. Бывает и так, что из строя выходит и электродвигатель.

Все эти неисправности имеют одно общее качество – производитель не предусматривает ремонта узла, позволяющего обойтись «малой кровью». Официальный сервис-мануал всегда будет рекомендовать замену узла в сборе. Это не значит, что ремонт невозможен, но для проведения этого ремонта однозначно потребуется обладать прямыми руками, аккуратностью и готовностью к техническому творчеству. В силу отсутствия такового опыта, каких-то конкретных рекомендаций в этом разделе приведено не будет.

Часто встречающиеся ошибки по датчикам положения

Во многих статьях в интернете существуют перечни ошибок, в соответствие которым приводятся вероятные причины их возникновения. При всем уважении к труду авторов, однако, следует заметить – все эти описания в значительной степени бессмысленны по следующим причинам:

1) Все очень зависит от конкретного условия возникновения кода ошибки, а эти условия могут варьироваться в зависимости от производителя даже для стандартных кодов ошибок.

2) Ошибки по системе управления дросселем часто формируются с номерами, специфичными для конкретного производителя. Распространенные коды ошибок для Toyota никак не помогут в диагностике кодов ошибок для Renault, например.

Впрочем, есть и особенность – так, например, в числе стандартных кодов ошибок OBD2 не предусмотрено отдельных кодов для ошибок по датчику положения педали и по датчику положения заслонки. Характерное название ошибки будет звучать так: «P0120 Throttle Position Sensor/Switch A Circuit Malfunction». Поэтому, конечно, особо важной является возможность прочитать ошибки именно по заводскому протоколу.

А в общем рекомендация остается прежней. Для полноценной диагностики нужна документация и подходящий инструмент – светлая голова, мультиметр и программа Motordata OBD.

Читайте также:  Почему троит дизельный двигатель: возможные причины

Бочканов Евгений Александрович
© Легион-Автодата

Электронная дроссельная заслонка: как она устроена, и как её ремонтировать?

Тренд автомобильного инжиниринга всех последних лет – планомерное отстранение водителя от непосредственного управления машиной. Пока, слава богу, мы не дошли массово до потери жесткой связи наших рук и ног с поворачивающимися колесами и тормозами, но к тому все явно идет… Как минимум, ни один автомобиль в наши дни уже не выпускается без электронной дроссельной заслонки, при которой мы не отдаем прямую команду дросселю «больше воздуха!» правой ногой через тросик, а высказываем пожелание блоку управления двигателем, который уже сам отправляет команду на заслонку. Хорошо это или плохо, и как с этим жить?

История вопроса

П ринято считать, что так называемый E-газ – это технология последнего примерно десятилетия. В чистом виде – да, но интегрированный электропривод в дроссельных заслонках появился гораздо раньше – еще в 80-х. В те годы на оси заслонки с одной стороны располагался сектор газа, связанный с педалью акселератора классическим тросиком (да-да, «колесико», которое приводится в движение тросиком от педали, называется «сектором газа»!), а с другой стороны ось заслонки соединялась через шестеренчатую передачу с небольшим электромотором.

Собственно, на поведение машины при движении моторчик влияния не оказывал – связь с ногой водителя была олдскульная, механическая и четкая: как надавишь, так и поедешь! А вступал в работу электромотор только в режиме холостого хода, корректируя степенью приоткрытия заслонки обороты при прогреве и после прогрева, а также чуть добавляя газку при включении мощных потребителей электроэнергии и крутящего момента – кондиционера летом, ГУРа на морозе, разных обогревов и т.п. Чуть позже функции моторчика в дросселе расширились – при практически неизменной конструкции добавилось электронных команд: он стал управлять не только оборотами холостого хода, но и оборотами в движении – при включении круиз-контроля и при активации антипробуксовочной системы.

Сейчас же все достигло «апофигея технологичности» – механическая связь заслонки с педалью газа исчезла в принципе, и все команды – как от ноги водителя, так и от сервисных систем – дроссель получает лишь при посредничестве блока управления двигателем. Причин тому – три:

  • Экологические требования;
  • Рост экономии топлива;
  • Удобство в реализации множества современных функций автомобиля.

Электронный дроссель в наши дни

Итак, прямая связь дроссельной заслонки с педалью упразднена полностью и окончательно. Как я уже говорил, нажатием на педаль мы отправляем сигнал в блок управления, а тот в свою очередь анализирует обстановку и множество параметров, а затем отдает команду на подачу воздуха. При этом надо сказать, что за добрый десяток лет развития тандема электронной педали газа и электронного дросселя в его современном понимании система благополучно переросла ряд детских болезней – как чисто физических, так и софтовых.

Изнашивающиеся скользящие контакты датчиков положения заслонки вытеснила бесконтактная индуктивная связь, появилось множество новых функций – не настолько явных, чтобы занять строчку в техническом описании автомобиля, но в комплексе достаточно важных.

Например, ход педали газа стал нелинейным, что позволило лучше контролировать автомобиль во время начала движения: при мощном моторе (где заслонка имеет большой диаметр) исчез риск избыточно резко рвануться вперед при легком касании педали – электронный дроссель в первой четверти хода педали газа реагирует намеренно вяло.

E-газ позволяет наиболее оптимально провести разгон на авто с турбированным двигателем, в значительной мере борясь с турбоямой и обеспечивая более ровное ускорение с низов. Е-газ поможет и при режиме «педаль в пол», когда в случае классической тросовой заслонки первые мгновения идет неоптимальное сгорание смеси, и теряются секунды на разгоне. Конечно же, нельзя не упомянуть эффективную систему автоматического управления тягой мотора для борьбы со сносами и проскальзываниями ведущих колес.

При этом, правда, нужно отметить, что поведение электронного дросселя на бюджетных машинах по-прежнему серьезно отличается от среднеценовых и, тем более, премиальных автомобилей. В «бюджетках» E-газ, к сожалению, излишне туповат, задумчив и не способствует получению истинного удовольствия от драйва.

Да еще порой и на безопасность влияет отрицательно – дроссель с неоптимальным управляющим программным обеспечением реагирует на нажатие педали с задержкой, выдавая момент на колесах тогда, когда уже поздно. При отсутствии систем стабилизации зимой на скользком покрытии и в повороте такая реакция машины способна свести на нет ваши традиционные навыки зимнего вождения и создать аварийную ситуацию.

Простота и сложность электронного дросселя

Обычно внедрение электроники сопровождается невероятным усложнением конструкции. В случае с дросселем все с точностью до наоборот! Вдумчиво изучив его, можно обнаружить, что он невероятно прост и лишен ряда хитрых технических решений, имевшихся прежде у классических дросселей с тросовым приводом. А уж старый добрый двухкамерный карбюратор по сравнению с E-дросселем – и вовсе сложнейший и дорогущий в производстве прибор эпохи «стимпанк»…

Во-первых, конечно же, E-дроссель не нуждается в регуляторе холостого хода – клапане подачи воздуха по тоненькому каналу, управляемому шаговым двигателем, который склонен к загрязнению картерными газами и нестабильной работе. В случае электронного дросселя клапан регулировки холостого хода исчезает – ХХ обеспечивается приоткрытием основной заслонки – ведь она и так электроуправляемая, а стало быть, прекрасно справляется с регулировкой оборотов, подстраиваясь под включенные потребители, температуру наружного воздуха и антифриза, и т.п.

Еще в систему холостого хода при классическом дросселе часто входили дополнительные байпасные воздушные каналы в обход заслонки, также весьма склонные к засорению. Эти каналы открывались не плавно, а по принципу «вкл/выкл», внешними электроклапанами – к примеру, для компенсации нагрузки на двигатель при включении кондиционера. В электронном дросселе это все тоже оказалось ненужным – компенсация просадки оборотов делается опять же самой дроссельной заслонкой.

Читайте также:  КПП Лада Веста механика и особенности МКПП

Также у классического дросселя имелся подогрев антифризом от системы охлаждения, поскольку все вышеупомянутые тоненькие каналы в холодное время боялись обмерзания. В электронном дросселе, особенно если монтируется он на пластиковом впускном коллекторе, нужды в подогреве часто нет – штуцеры подвода и отвода антифриза из него исчезают.

Иначе говоря, электронный дроссель взял на себя сразу несколько функций, до предела упростив свою механическую часть.

Да, по «механике» ломаться стало практически нечему – настолько все там просто и примитивно: простейший электромоторчик, который через пару пластиковых, но достаточно крепких шестеренок связан с осью заслонки, да возвратная пружина на той же оси.

Собственно, даже вопрос периодической чистки дросселя заметно снизил свою актуальность после избавления от системы узких байпасных каналов. Однако существенно усложнилась электронная часть, преподносящая порой сюрпризы – как объяснимые, так и совершенно загадочные и беспричинные.

Проблема заключается в том, что электронная плата дросселя, являющаяся, по сути, только сдвоенным датчиком, отслеживающим положение и динамику открытия заслонки, зачастую неремонтопригодна и отсутствует в продаже. Если электродвигатель при подаче диагностических 12 вольт ровно жужжит, редукторные шестеренки не имеют повреждений и заеданий, а в проводке от заслонки к ЭБУ нет плохих контактов, может потребоваться замена дроссельной заслонки в сборе. Увы.

И вот тут-то многие могут столкнуться с неприятным сюрпризом. На Лада Гранта этот узел в сборе стоит 5 000 рублей, что немало, но в целом подъемно, а на Volkswagen Polo Sedan – 25 000 рублей… Такая сумма способна пробить серьезную дыру в бюджете, а расстройства добавит тот факт, что обе детали, за 5 и за 25 тысяч рублей, технически почти идентичны, но конструктивно и программно несовместимы.

Что делают «jetter», «шпора» и «бустер педали газа»?

Говоря об электронном дросселе, этот класс устройств нельзя не упомянуть. Под такими названиями известен популярный гаджет для машин с E-газом, который, по словам производителей, «дает рост динамике и скорости». «Джеттер» – небольшая коробочка, включающаяся в цепь между педалью газа и блоком управления двигателем и искажающая сигнал педали так, чтобы заставить ЭБУ думать, что «тапка в полу», когда вы лишь слегка коснулись акселератора.

На самом деле, ни скорости, ни динамики эти гаджеты не добавляют и добавить не могут. Они просто меняют электромеханическую характеристику педали акселератора. Характеристика педали всегда нелинейна – изначально электронная педаль чаще всего настроена так, чтобы в первой половине хода быть малоотзывчивой, выдавая четверть мощности двигателя, а за оставшуюся половину выдавать остальные три четверти. Это, безусловно, весьма упрощенное описание, цифры тоже условны, но суть именно такова. «Джеттер» же меняет заводскую характеристику «наизнанку» – педаль начинает выдавать почти всю мощность двигателя на первой половине хода, субъективно делая машину «резкой». Некоторый эффект действительно ощутим, особенно при первом сравнении, но надо понимать, что ничего такого, чего бы нельзя было сделать ногой без применения электронной «примочки», не происходит.

Собственно говоря, программные аналоги «джеттера» давно имеются во многих автомобилях высокого класса. Там это называется переключением режимов вождения, под которыми понимается управление настройками двигателя, КПП и иногда – шасси, если в нем имеются управляемые амортизаторы. Смена режима «нормал» на «спорт» (названия могут быть иными в авто разных марок и моделей) включает в себя наряду с изменением массы других настроек и коррекцию характеристики педали газа, как это делает и «джеттер».

Заслонка изнутри

Перед нами дроссельная заслонка Volkswagen Polo Sedan. Машина приехала на сервис с жалобой на неадекватное поведение педали газа, горящий «чек» и двигатель, явно не развивающий положенную мощность. Диагностика выявила неисправность дроссельной заслонки, которая и была заменена по гарантии. Никаких более глубоких причин выхода её из строя дилерский сервис искать не стал, поскольку подобные процедуры не предусмотрены регламентом. Пользуясь случаем, на примере «приговоренной» заслонки изучим её устройство и попробуем обнаружить неисправность. Ведь гарантия сохранилась не у всех!

Снаружи на дросселе видны четыре отверстия, через которые болты притягивают дроссель к коллектору, небольшой зазор в закрытом состоянии для поступления в цилиндры воздуха в режиме холостого хода, а также логотип итальянского производителя Magneti Marelli. Кстати, одной из старейших в мире компаний, производящих автомобильную электронику.

электрическая дроссельная заслонка VAG – промывка, адаптация, нюансы

несмотря на то, что данная система управления оборотами применяется на вагах уже лет 15 точно, до сих пор находятся люди, которые не могут нормально с ней разобраться. далее я постараюсь рассказать основные принципы и некоторые нюансы работы с данной системой.

я не буду рассказывать что это и как это и для чего это — потому что пишу не для дилетантов, а для людей, хоть немного разбирающихся в вопросе.
я также не буду рассказывать о неисправностях датчиков внутри механизма заслонки.

Читайте также:  Почему плохо включается первая передача на prioraя: причины и решение

проблема номер раз.
в общем случае эти заслонки делятся на два типа — с тросиком и без. отличия (применительно к теме данной статьи) — в основном в процедуре адаптации.

время от времени на машинах с такой заслонкой начинаются проблемы с холостыми оборотами. источник этих проблем — грязь, которая забивается в щель между самой заслонкой и корпусом, и там засыхает, уменьшая сечение на малых углах открытия заслонки. как следствие — при том же угле открытия, воздуха в двигатель начинает поступать меньше. в каких-то пределах ЭБУ способен это скомпенсировать, но со временем в любом случае количество нагара превысит способности ЭБУ к адаптации. причем, чем дольше машина эксплуатируется на предельных адаптациях — тем сложнее заставить ее потом нормально работать.

ну что ж, займемся решением этой проблемы. для начала — заслонку нужно промыть. при этом ее крайне желательно снять. не потому что грязь попадет во впускной коллектор, хотя это тоже немаловажно. а просто потому, что не снимая — ее не получится нормально промыть. а значит — на нее продолжит налипать грязь, превращаясь в нагар и создавая проблемы. и начнется этот процесс с тех мест, где плохо промылось и грязи есть за что зацепиться.

часто на заслонках пишут — «ахтунг! ни в коем случае не мыть и даже не прикасаться!» не помню, видел ли это на вагах, но это и не важно. на эту надпись в данном случае можно успешно забить. почему? объясню. заслонку нельзя трогать, потому что на нее нанесено покрытие, предотвращающее налипание грязи. но если на ней уже есть нагар и грязь, то значит что? правильно. покрытие уже не работает. значит мыть можно и нужно. при этом не стоит использовать сильно твердые предметы. вполне достаточно жесткой кисточки и растворителя. промыли, продули. не спешим ставить на место! нужно ОБЯЗАТЕЛЬНО убедиться в том, что заслонка при открытии и закрытии нигде не клинит. особенно — что она нормально закрывается. причем закрывается до упора, а не до заклинивания в корпусе. если заслонка заклинивает при закрытии, или недозакрывается — нужно ее подрегулировать. для этого ослабляем винты, крепящие ее к оси, и закрываем заслонку пальцами. она становится на место, после чего, не отпуская пальцы, зажимаем винты, при полностью закрытой заслонке. при необходимости — повторяем. часто при ошибках адаптации рекомендуют нажать на заслонку пальцем в момент ее закрытия по сигналу от ЭБУ. это нажатие пальцем в момент адаптации — танцы с бубном, производимые вместо нормальной установки заслонки на место где ей положено быть.

вот теперь — можно ставить на машину. если заслонка с тросиком — то проверяем свободный ход тросика. он не должен быть натянут, привод, в который трос вставляется должен лежать на упоре, но не висеть на тросе. заслонка при ее закрытии вручную — должна плотно закрываться, и, опять же, трос не должен ей в этом мешать.

нажимая на заслонку — следует помнить, что сдуру можно сломать не только ее, но и даже самизнаетечто. ;)

следующий этап — адаптация заслонки. нам понадобится вагком. адаптация, точнее базовая установка, может проводиться в трех разных группах. 060 для заслонки без тросика, 098 или 001 — для заслонки с тросиком.

процедура проводится следующим образом:
1. двигатель полностью прогрет. я предпочитаю воткнуть вместо датчика температуры «эмулятор» — пара резисторов в корпусе стандартного датчика, с сопротивлением соответствующим примерно 90*. это где-то 250 Ом для моторного и 125 Ом для приборки.
2. включаем зажигание, подключаемся к моторному, читаем и стираем ошибки. можно выключить-включить зажигание, чтобы на 100% убедиться что ошибок нет. ни при наличии ошибок, ни при непрогретом двигателе — адаптировать заслонку не получится. процедура адаптации либо не запустится вообще, либо отработает неправильно. если ошибки есть — их нужно устранить ДО адаптации заслонки.
3. выбираем адаптации. канал 0, прочитать-записать. эта процедура — стирание адаптаций. в вагтуле для этого есть отдельная кнопка.
4. собственно, адаптация. базовые установки, 098 или 060 — Go! в одном из окошек появится надпись adp run и сменится на adp ok. если вместо adp ok появляется adp error — значит либо что-то сделали не так, либо заслонка неисправна — это может быть и износ датчиков ее положения, и окисление контактов, и неисправность моторчика. в общем вариантов много, и тема для отдельной статьи. хотя тут пожалуй статью и писать-то не о чем — это обычная рутина, поиск и устранение неисправности. тут общих рецептов быть не может.
при адаптации в 001 группе (это как правило старый simos) надписи adp run|ok|error не появляются, просто скачут нолики и единички. можно визуально пронаблюдать за движением заслонки, можно просто выждать секунд 20.
5. выходим из базовых, проверяем ошибки — на всякий случай, выходим из блока, выключаем зажигание. курим секунд 30 — на всякий случай. за это время отключаем эмулятор датчика.

Читайте также:  Классификация трансмиссионных масел — Автосервис

рекомендую при адаптации наблюдать за движением заслонки — оно может подсказать о проблемах, даже если ошибок пока нет. для безтросикового варианта заслонка должна полностью закрыться, полностью открыться, и остановиться в трех промежуточных значениях. для тросикового варианта — аналогично, но открываться будет неполностью. для разных моделей очередность может отличаться, но общая суть — именно такова. отрабатывать все эти движения заслонка должна четко, резко и уверенно. если она вяло открывается и закрывается, либо недо(за/от)крывается, либо дрожит при полном открытии/закрытии — не исключено, что подыхает моторчик. в этом случае как правило была ошибка по его обрыву, либо она появляется время от времени, либо еще начнет появляться ;)

ну что же, покурили — можно заводить. тут возможны три варианта — либо обороты будут держаться нормально, либо будут повышенные, либо станут повышенными после пробной поездки. вторым обычно отличаются малообъемные моторы с мотроником mp9 на борту, например AER, последним — как правило отличается мотор ADY.

лечение.
для мп9 лечение называется ненаучным словом «дрочка». заводим мотор — обороты, скажем, 2500, управление заслонкой, скажем 12%. может появляться ошибка по пределу регулировки. для начала — неплохо бы убедиться что никто не сбил зажигание. потому что если еще и зажигание сбито — то тут вообще весело. будем надеяться, что зажигание никто не сбивал. проверяем наличие ГУР, наичие на нем датчика давления, и если датчик есть — его исправность. можно в 19 группе измеряемых величин, 4 окно, 2 разряд справа (во всяком случае так у меня записано), можно тестером, можно просто отключить его для верности. если этот датчик глючит — то моторный будет считать что на двигатель пошла нагрузка от ГУРа и для ее компенсации чуть приоткроет заслонку и поднимет обороты. и если всё нормально — то ни падения, ни повышения оборотов мы не заметим. если на самом деле нагрузки нет — то обороты резко подскакивают, моторный пугается, и начинает вести себя неадекватно. 544 (или 533?) ошибка, плавающие обороты и прочие прелести.
ок, зажигание и ГУР в норме, а обороты повышенные? ну что, начинаем др*чить. заводим двигатель (он должен быть полностью прогрет!), подключаемся сканером, 3 группа данных, ждем небольшого падения оборотов и угла открытия заслонки. как правило это 40-50 оборотов и 0.2-0.5 градуса. упало? глушим, и сразу заводим еще раз. и так — до снижения оборотов до штатных. задалбывает, знаю. нодругой методики, к сожалению, не знаю ;) кстати, имейте в виду, что на некоторых ваговских моторах очень низкие штатные обороты ХХ. вплоть до 650. и вплоть до зажигания лампы давления масла.
после стабилизации нормальных оборотов — желательно проверить зажигание. подключаем стробоскоп, переходим в базовые установки, 1 группа. обороты должны вырасти до примерно 1500. зажигание выставляется как обычно — поворотом распределителя, метка — спереди на шкиве, задняя по ходу движения метка. передняя — это ВМТ. видно ее там отвратительно :(

для ADY типична проблема задирания оборотов после поездки. 100% методика устранения мне не известна, однако лучше всего показал себя следующий метод. на работающей машине скидываем патрубок системы вентиляции, который подключен в патрубок соединяющий расходомер воздуха и дроссельную заслонку.

даем поработать, наслаждаемся садистским удовольствием, глядя как он бьется в конвульсиях. а нефиг выпендриваться с оборотами. ;) дожидаемся появления ошибки по адаптации смеси, после чего глушим, подключаем патрубок, стираем ошибки, заводим. обычно помогает. если не ошибаюсь, лучший эффект достигается когда обороты повышенные, то есть после поездки. снятие всего патрубка от расходомера до заслонки как правило не помогает, только подсос по патрубку системы вентиляции. расходомер, кстати, должен быть чист и исправен.
если я правильно понимаю, на этих ЭБУ при стирании адаптаций либо просто ничего не происходит, либо не стираются адаптации дроссельной заслонки. зато после ошибки расходомера, точнее ее стирания, стираются все адаптации. возможно, они должны превысить определенные значения, для того чтобы ЭБУ принял решение их стереть при стирании ошибки по расходомеру. если заслонка не очень грязная — можно попробовать ее не адаптировать вовсе — то есть ни стирать адаптации, ни делать базовые в 001 группе. прокатиться и проследить за адекватностью угла открытия заслонки.

угол открытия заслонки на прогретом моторе на ХХ вообще говоря для разных машин и систем разный, но в общем случае составляет порядка 4-5 градусов.

очень жду обратной связи по этим рекомендациям, особенно по мотору ADY!

теперь коротко рассмотрим вторую проблему этих заслонок.
это — износ моторчика. тут нам поможет либо замена моторчика, либо замена щеток в нем — смотря что неисправно. но для этого нам нужно снять моторчик. в сети я видел такие способы из серии «мы работы не боимся», что просто волосы шевелились. причем не на голове — на жопе, блин! ;) больше всего впечатлил метод, где вырезали сектор у большой шестерни, а потом впаивали его обратно. вот, собственно. бррр. как вспомню — так вздрогну. а на самом деле всё гораздо проще. снимаем черную пластиковую крышку, чтобы получить доступ к внутренностям заслонки. видим большую шестеренку, приводимую моторчиком. ее нам нужно снять, чтобы получить доступ к моторчику. для этого нам нужно выбить ось, на которой она сидит. для этого в корпусе предусмотрено технологическое отверстие. для удобства — можно открутить разъем. и выбить ось выколоткой 2мм или любым гвоздем — соответствующего диаметра.

Читайте также:  Как заряжать аккумулятор автомобиля зарядным устройством


искомое отверстие находится примерно по стрелке, его тут не видно за разъемом. при случае фотку заменю.

под номером 1 – именно та ось, которую нам нужно выбить. выбивается она вот в эту сторону, а стучать выколоткой нужно с той стороны где цифра 2 ;) фотку, опять же, заменю при первой же возможности.

нагуглил подходящую фотку. надеюсь, авторские права не нарушу. ну и что даже стрелочкой показывать дырочку не нужно:

к сожалению, других фоток нет, как и ненужной заслонки для опытов и демонстрации. но в принципе — дальше всё понятно.
видим моторчик, и видим что он закрыт пластмассовой пластиной с контактами. примерно такого вида — _/|_ вот эти _/ _ контакты отгибаем, чтобы не мешали сниматься. вот так примерно — _|||_. потом подогнем назад, и они защелкнутся на моторчик как новые. далее бормашинкой разрезаем пластик в самых узких и самых близких к моторчику местах. поднимаем пластину, извлекаем моторчик. главное тут запомнить, а лучше наметить как он стоял.

дальше разбираем его и дефектуем. вариантов несколько:
1. износ щеток
2. износ коллектора
3. межвитковое замыкание или обрыв обмотки ротора
4. грязный коллектор.

очевидно, что самая простая для устранения проблема — последняя. прошлись мелкой шкуркой — и вперед. на втором месте — щетки. выточили надфилем из подходящих по размеру — и тоже вперед. износ коллектора очевиден и не лечится, межвитковое будет видно по почерневшей обмотке, ну и можно проверить по индуктивности между соседними ламелями коллектора. обрыв — проверять омметром, между каждыми соседними ламелями коллектора. собственно, в случаях 2 и 3 моторчик лучше поменять.

сборка — в обратной последовательности, за исключением того, что пластину с контактами приваривать не нужно — одеваем на моторчик и не заморачивается, держится она очень крепко, контачит хорошо, и никуда не денется. при ее распиливании неминуемо образуется пыль, ее нужно сдуть — но это, думаю, очевидно. лучше предварительно закрыть датчики положения чем-нибудь, чтобы на них не попадало всякое. при сборке можно их смазать смазкой для потенциометров — например kontakt PR или аналогами. если есть сильный износ — менять нафиг сразу, это, думаю, тоже очевидно.

сравнить по трудоемкости выбивание оси с распиливанием и склеиванием шестерни — можете сами, на досуге ;)

после сборки — ставим на место и адаптируем, как описано выше.

Вакуумный усилитель тормозов

Вакуумный усилитель тормозов или как говорят в простонародье «вакуумник» — является видом усилителя, применяющийся в тормозной системе авто. Служит для того, чтобы создавать дополнительное усилие педали тормоза за счет разряжения. Применение вакуумного усилителя дает облегчение работы тормозной системы.

Устройство вакуумного усилителя тормозов

Металлический корпус самого усилителя тормозов диафрагмой разделён на две половины – на вакуумную, идущую со стороны ГТЦ (главного тормозного цилиндрика), и на атмосферную, выходящую на тормозную педаль. К слову сказать, вакуумный усилитель и ГТЦ конструктивно и механически объединены в единую систему – тормозную.

Вакуумный усилитель вместе с главным тормозным цилиндром включают в себя:
1. корпус,
2. диафрагму,
3. следящий клапан,
4. толкатель,
5. шток поршня ГТЦ,
6. возвратную пружину.

Безвоздушная камера, то есть вакуумная, выходит при помощи клапана на впускной коллектор. На всех современных автомобилях для стабильной работы усилителя тормозов дополнительно устанавливают электронасос. При выключенном двигателе клапан обратки отсоединяет вакуумный усилитель от коллектора — тормоза просто-напросто пропадают. Точно такой же принцип и при малейшей поломке вакуумного агрегата, даже если мотор работает.

Атмосферная камера, вторая половина устройства, при помощи клапана соединяется и с вакуумной камерой, и с атмосферой. Именно на клапане и основан весь принцип работы вакуумного усилителя – создание разницы давлений между двумя камерами. В исходном положении, когда вы не давите на педаль тормоза, давление в двух камерах одинаково.

Нажимая педаль, толкатель двигается к следящему клапану и штоку тормозного цилиндра. Этим самым клапан закрывает канал между вакуумом и атмосферой. Что получается? Со стороны вакуумной камеры давление остаётся прежним, а со стороны атмосферной камеры происходит разряжение.

По окончании торможения возвратная пружина возвращает диафрагму в начальное положение.

Признаки неисправного усилителя тормозов

Не стоит сильно пугаться, если у вас вдруг отказал вакуумный усилитель. Ничего в этом страшного нет – просто вам придётся с большим усилием давить на тормозную педаль и прилагать чуть больше усилий для управления автомобилем.

Основные признаки:

1. С каждым разом вам всё труднее и труднее нажимать педаль, а эффект от торможения минимальный;
2. На холостых оборотах двигатель «троит», нажав педаль тормоза — начинает работать ровно и ритмично;
3. Обрыв или трещина в шлаге, которые приводят к появлению шипения или посторонним звукам в усилителе;
4. Вакуумный усилитель начинает «подсасывать» воздух;
5. Разрыв диафрагмы, износ сальников или резины на клапанах.

Проверка усилителя тормозов

Читайте также:  Схема электрооборудования ваз 2106 описание неисправности цветные электросхемы зажигания

Проверить самостоятельно работу вакуумника не составляет особого труда. Есть несколько достаточно простых способов:

1. Двигатель начинает «троить», а после нажатия тормозов он работает как часики. Всё дело в том, что при разгерметизации воздух засасывается во впускном коллекторе. А это ведёт к резкому смешиванию воздуха и топливной смеси, поступающие в цилиндры двигателя.
2. При выключенном моторе прокачайте (нажмите) 5-6 раз педаль тормоза. Потом ещё раз нажмите и на середине хода остановите. Не отпуская педаль, запустите двигатель. Педаль «провалилась» до полика — вакуумный усилитель работает исправно. Если ничего не изменилось после запуска мотора, то стоит подумать о замене или ремонте.
3. Осматривая поверхность, вы заметили подтеки, оставляемые тормозной жидкостью.

Не стоит постоянно быть уверенным в работе вакуумника или тормозов. Они, как и вся машина, хотят получать внимания. А тормозная система особенно – она никогда не прощает ошибок.

Устройство и принцип работы вакуумного усилителя тормозов

Вакуумный усилитель является одним из неотъемлемых элементов тормозной системы автомобиля. Главное его предназначение – увеличение усилия, передаваемого от педали к главному тормозному цилиндру. За счет этого управление автомобилем становится более легким и комфортным, а торможение эффективным. В статье разберем, как работает усилитель, узнаем из каких элементов он состоит, а также выясним, можно ли без него обойтись.

  1. Функции вакуумного усилителя
  2. Устройство вакуумного усилителя тормозов
  3. Принцип работы вакуумного усилителя тормозов
  4. Датчики вакуумного усилителя
  5. Заключение

Функции вакуумного усилителя

Основными функциями вакуумника (простонародное обозначение устройства) являются:

  • увеличение усилия, с которым водитель давит на педаль тормоза;
  • обеспечение более эффективной работы тормозной системы при экстренном торможении.

Дополнительное усилие вакуумный усилитель создает за счет возникающего разряжения. И именно это усиление в случае экстренного торможения автомобиля, двигающегося с большой скоростью, позволяет всей системе тормозов отработать с высоким КПД.

Устройство вакуумного усилителя тормозов

Конструктивно вакуумный усилитель представляет собой герметичный корпус округлой формы. Он устанавливается перед тормозной педалью в моторном отсеке. На его корпусе располагается главный тормозной цилиндр. Существует еще одна разновидность устройства – гидровакуумный усилитель тормозов, который включен в гидравлическую часть привода.

Схема вакуумного усилителя тормозов

Вакуумный усилитель тормозов состоит из следующих элементов:

  1. корпус;
  2. диафрагма (на две камеры);
  3. следящий клапан;
  4. толкатель педали тормоза;
  5. шток поршня гидроцилиндра тормозов;
  6. возвратная пружина.

Корпус устройства разделен диафрагмой на две камеры: вакуумную и атмосферную. Первая расположена со стороны главного тормозного цилиндра, вторая – со стороны педали тормоза. Через обратный клапан усилителя вакуумная камера соединена с источником разряжения (вакуума), в качестве которого на автомобилях с бензиновым двигателем используется впускной коллектор перед подачей топлива в цилиндры.

Вакуумный насос

В дизеле же источником разряжения служит электрический вакуумный насос. Здесь разряжение во впускном коллекторе незначительное, поэтому насос является обязательным элементом. Обратный клапан вакуумного усилителя тормозов разъединяет его с источником разряжения при остановке двигателя, а также в случае, при котором вышел из строя электровакуумный насос.

Диафрагма соединена со штоком поршня главного тормозного цилиндра со стороны вакуумной камеры. Ее движение обеспечивает перемещение поршня и нагнетание тормозной жидкости к колесным цилиндрам.

Атмосферная камера в исходном положении соединена с вакуумной камерой, а при нажатой педали тормоза – с атмосферой. Сообщение с атмосферой обеспечивает следящий клапан, перемещение которого происходит при помощи толкателя.

В конструкцию вакуумника в целях увеличения эффективности торможения в экстренной ситуации может быть включена система экстренного торможения в виде дополнительного электромагнитного привода штока.

Принцип работы вакуумного усилителя тормозов

Работает вакуумный усилитель тормозов за счет разного давления в камерах. При этом в исходном положении давление в обеих камерах будет одинаковое и равное давлению, создаваемому источником разряжения.

При нажатии на педаль тормоза толкатель передает усилие к следящему клапану, который перекрывает канал, соединяющий обе камеры. Дальнейшее движение клапана способствует соединению атмосферной камеры через соединяющий канал с атмосферой. Вследствие чего разряжение в камере снижается. Разница давления в камерах перемещает шток поршня главного тормозного цилиндра. Когда торможение заканчивается, камеры вновь соединяются и давление в них выравнивается. Диафрагма под действием возвратной пружины занимает свое исходное положение. Вакуумник работает пропорционально силе нажатия на тормозную педаль, т.е. чем сильнее водитель будет нажимать на педаль тормоза, тем эффективнее будет работать устройство.

Датчики вакуумного усилителя

Эффективную работу вакуумного усилителя с наиболее высоким коэффициентом полезного действия обеспечивает пневматическая система экстренного торможения. В состав последней входит датчик, измеряющий скорость перемещения штока усилителя. Он расположен непосредственно в усилителе.

Также в вакуумнике присутствует датчик, определяющий степень разряжения. Он предназначен для сигнализации о недостатке вакуума в усилителе.

Заключение

Вакуумный усилитель тормозов является незаменимым элементом тормозной системы. Без него обойтись, конечно, можно, но не нужно. Во-первых, придется тратить больше усилия при торможении, возможно, даже придется жать на педаль тормоза двумя ногами. А во-вторых, езда без усилителя небезопасна. В случае экстренного торможения может просто не хватить тормозного пути.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: