Мощный, регулируемый блок питания на lm317

Мощный стабилизатор на lm317 и транзисторе

LM317 регулируемый стабилизатор напряжения и тока. Характеристики, онлайн калькулятор, datasheet

Интегральный, регулируемый линейный стабилизатор напряжения LM317 как никогда подходит для проектирования несложных регулируемых источников и блоков питания, для электронной аппаратуры, с различными выходными характеристиками, как с регулируемым выходным напряжением, так и с заданным напряжением и током нагрузки.

Для облегчения расчета необходимых выходных параметров существует специализированный LM317 калькулятор, скачать который можно по ссылке в конце статьи вместе с datasheet LM317.

Технические характеристики стабилизатора LM317:

  • Обеспечения выходного напряжения от 1,2 до 37 В.
  • Ток нагрузки до 1,5 A.
  • Наличие защиты от возможного короткого замыкания.
  • Надежная защита микросхемы от перегрева.
  • Погрешность выходного напряжения 0,1%.

Эта не дорогая интегральная микросхема выпускается в корпусе TO-220, ISOWATT220, TO-3, а так же D2PAK.

Сообщить об опечатке

О схемах, обещающих получить на выходе LM регулируемое напряжение от ноля Вольт. В процессе подбора сопротивлений допускается небольшое отклонение 8…10 мА. С помощью Rs можно настроить ограничение тока, а R1 и R2 определяют ограничение напряжения.

Значит, надо следить не только за максимальным током нагрузки, но и за минимальным тоже?

Схема стабилизатора тока на lm Плюс данного стабилизатора в том, что он является линейным и не вносит высокочастотные помехи, например как некоторые импульсные стабилизаторы.

При увеличении или уменьшении напряжения ток остается стабильным. Я часто покупаю детали в Китае и пришел к такому выводу: Покупать можно, но нужно выбирать поставщиков, которые продают радиодетали, изготовленные на заводах, а не в цехах какого- нибудь не понятного ИП. В ниже приведенной схеме, LM ограничивает Iпотр.

Микросхема LM в корпусе ТО способна стабильно работать при максимальном токе нагрузки до 1,5 ампер.

Эта микросхема очень универсальна, на ней можно строить как всевозможные , так и ограничители тока, зарядные устройства … Но остановимся на ограничители тока. Регулятор напряжения на кр142ен12а

Характеристики, включение МС lm317, схема, стабилизатор тока

Качественный блок питания с регулируемым выходным напряжением – мечта каждого начинающего радиолюбителя. В быту такие устройства применяются повсеместно. К примеру, взять любое зарядное устройство для телефона или ноутбука, блок питания детской игрушки, игровой приставки, стационарного телефона, многих других бытовых приборов.

Что касается схемной реализации, конструкция источников может быть разной:

  • с силовыми трансформаторами, полноценным диодным мостом;
  • импульсные преобразователи сетевого напряжения с выходным регулируемым напряжением.

Но чтобы источник был надежным, долговечным, для него лучше выбирать надежную элементную базу. Здесь то начинают возникать трудности.

Например, выбирая в качестве регулирующих, стабилизирующих компонентов отечественного производства, порог нижнего напряжения ограничивается 5 В. А что делать, если требуется 1,5 В? В таком случае лучше воспользоваться импортными аналогами.

Тем более они более стабильны и практически не греются при работе. Одним из самых широко употребляемых является интегральный стабилизатор lm317t.

Основные характеристики, топология микросхемы

Микросхема lm317 является универсальной. Она может быть использована как стабилизатор с постоянно установленным выходным напряжением и как регулируемый стабилизатор с высоким КПД.

МС обладает высокими практическими характеристиками, делающими возможным его использование в различных схемах зарядных устройств или лабораторных блоков питания.

При этом вам даже не придется волноваться за надежность работы при критических нагрузках, потому что микросхема оснащена внутренней защитой от короткого замыкания.

Это весьма хорошее дополнение, потому что максимальный выходной ток стабилизатора на lm317 составляет не более 1,5 А. Но наличие защиты не даст вам ее непреднамеренно спалить.

Для повышения тока стабилизации необходимо использование дополнительных транзисторов. Таким образом, можно регулировать токи до 10 и более А при использовании соответствующих компонентов.

Но об этом поговорим позже, а в таблице ниже представим основные характеристики компонента.

Читайте также:  Паяльный фен своими руками
Параметр Значение
Uоп. 1,25 В
Макс разница между Uвых. и Uвх. Не более 40 В
Мин разница между Uвых. и Uвх. Не менее 1,3 В
Макс. Uвых. 37 В
Мин. Uвых. 1,25 В
Iвых. макс. 1,5 А
Iрег До 100 мкА
Пульсации Не более 65 дБ
Тип корпуса ТО-220
Предел рабочих температур От 0 до +125 градусов

Цоколевка микросхемы

Изготовлена интегральная микросхема в стандартном корпусе ТО-220 с теплоотводом, устанавливаемым на радиатор. Что касается нумерации выводов, они расположены по ГОСТу слева направо и имеют следующее значение:

Номер вывода Название вывода Значение
1 Adj Регулировка
2 Out Выход
3 In Вход

Вывод 2 соединен с теплоотводом без изолятора, поэтому в устройствах, если радиатор контактирует с корпусом, необходимо использовать изоляторы из слюды или любого другого теплопроводящего материала. Это важный момент, потому что можно случайно закоротить выводы, а на выходе микросхемы просто ничего не будет.

Аналоги lm317

Иногда найти конкретно требуемую микросхему на рынке не удается возможным, тогда можно воспользоваться подобными ей. Среди отечественных компонентов на lm317 аналог есть достаточно мощный и производительный.

Им является микросхема КР142ЕН12А.

Но при ее использовании стоит учесть тот факт, что она неспособна обеспечить напряжение меньше 5 В на выходе, поэтому если это важно, придется опять-таки использовать дополнительный транзистор или же найти именно требуемый компонент.

Что касается форм-фактора, то у КР есть столько же выводов, сколько их имеет lm317. Поэтому вам даже не придется переделывать схему готового устройства с целью подгонки параметров регулятора напряжения или неизменяемого стабилизатора.

При выполнении монтажа интегральной схемы ее рекомендуется устанавливать на радиатор с хорошим теплоотводом и системой охлаждения. Что довольно часто наблюдается при изготовлении мощного светильника на светодиодах.

Но при номинальной нагрузке устройство выделяет немного тепла.

Кроме отечественной интегральной схемы КР142ЕН12, выпускаются более мощные импортные аналоги, выходные токи которых в 2-3 раза больше. К таким микросхемам относятся:

  • lm350at, lm350t — 3 А;
  • lm350k — 3 А, 30 Вт в другом корпусе;
  • lm338t, lm338k — 5 А.

Производители этих компонентов гарантируют более высокую стабильность выходного напряжения, низкий ток регулирования, повышенную мощность с тем же минимальным выходным напряжением не более 1,3 В.

Особенности подключения

На lm317t схема включения довольно проста, состоит из минимального количества компонентов. При этом их число зависит от назначения устройства. Если изготавливается стабилизатор напряжения, для него потребуются следующие детали:

Rs – шунтирующее сопротивление, выполняющее также роль балласта. Выбирается значением около 0,2 Ом, если требуется обеспечить максимальный выходной ток до 1,5 А.

Резистивный делить с R1, R2, подключенный к выходу и корпусу, а со средней точки поступает регулирующее напряжение, образуя глубокую обратную связь.

Интегральный стабилизатор напряжения LM317. Описание и применение

Довольно часто возникает необходимость в простом стабилизаторе напряжения. В данной статье приводится описание и примеры применения недорогого (цены на LM317) интегрального стабилизатора напряжения LM317.

Список решаемых задач данного стабилизатора довольно обширен — это и питание различных электронных схем, радиотехнических устройств, вентиляторов, двигателей и прочих устройств от электросети или других источников напряжения, например аккумулятора автомобиля. Наиболее распространены схемы блоков питания на LM317 с регулировкой напряжения.

На практике, с участием LM317 можно построить стабилизатор напряжения на произвольное выходное напряжение, находящееся в диапазоне 3…38 вольт.

Технические характеристики:

  • Напряжение на выходе стабилизатора: 1,2… 37 вольт.
  • Ток выдерживающей нагрузки до 1,5 ампер.
  • Точность стабилизации 0,1%.
  • Имеется внутренняя защита от случайного короткого замыкания.
  • Отличная защита интегрального стабилизатора от возможного перегрева.

Мощность рассеяния и входное напряжение стабилизатора LM317

Напряжение на входе стабилизатора не должно превышать 40 вольт, а так же есть еще одно условие – минимальное входное напряжение должно превышать желаемое выходное на 2 вольта.

Читайте также:  Повышающий преобразователь или как зажечь светодиодную лампу от 2 батареек

Микросхема LM317 в корпусе ТО-220 способна стабильно работать при максимальном токе нагрузки до 1,5 ампер. Если не применять качественный теплоотвод, то это значение будет ниже. Мощность, выделяемая микросхемой в процессе ее работы, можно определить приблизительно путем умножения силы тока на выходе и разности входного и выходного потенциала.

Цена: 3400.00 руб.

Цена: 2700.00 руб.

Цена: 7000.00 руб.

Максимально допустимое рассеивание мощности без теплоотвода равно приблизительно 1,5 Вт при температуре окружающего воздуха не более 30 градусов Цельсия. При обеспечении хорошего отвода тепла от корпуса LM317 (не более 60 гр.) рассеиваемая мощность может составлять 20 ватт.

При размещении микросхемы на радиаторе необходимо изолировать корпус микросхемы от радиатора, например слюдяной прокладкой. Так же для эффективного отвода тепла желательно использовать теплопроводную пасту.

Подбор сопротивления для стабилизатора LM317

Для точной работы микросхемы суммарная величина сопротивлений R1…R3 должна создавать ток приблизительно 8 мА при требуемом выходном напряжении (Vo), то есть:

R1 + R2 + R3 = Vo / 0,008

Данное значение следует воспринимать как идеальное. В процессе подбора сопротивлений допускается небольшое отклонение (8…10 мА).

Величина сопротивления переменного резистора R2 напрямую связана с диапазоном напряжения на выходе. Обычно его сопротивление должно быть примерно 10…15 % от суммарного сопротивления оставшихся резисторов (R1 и R2) либо же можно подобрать его сопротивление экспериментально.

Расположение резисторов на плате может быть произвольным, но желательно для лучше стабильности располагать подальше от радиатора микросхемы LM317.

Стабилизация и защита схемы

Емкость С2 и диод D1 не обязательны. Диод обеспечивает защиту стабилизатора LM317 от возможного обратного напряжения, появляющегося в конструкциях различных электронных устройств.

Емкость С2 не только слегка уменьшает отклик микросхемы LM317 на изменения напряжения, но и снижает влияние электрических наводок, при размещении платы стабилизатора вблизи мест имеющих мощное электромагнитное излучение.

Как было уже сказано выше, ограничение максимально возможного тока нагрузки для LM317 составляет 1,5 ампера. Имеются разновидности стабилизаторов схожие по работе со стабилизатором LM317, но рассчитаны на более больший ток нагрузки. К примеру, стабилизатор LM350 выдерживает ток до 3 ампер, а LM338 до 5 ампер.

Для облегчения расчета параметров стабилизатора существует специальный калькулятор:

Конструкция устройства

Стабилизатор с двумя резисторами

Схема блока питания стабилизатора на lm317 с регулировкой тока и напряжения при минимальном обустройстве имеет два резистора, разница в сопротивлении которых регулирует напряжение на выходе и конденсаторах. Среднее значение тока на опорных элементах составляет 1,25 В. Сопротивление не должно превышать 240 Ом.

Корпус стабилизатора на схеме lm317 изготавливается из пластмассы. Возможные варианты: ТО 220 и 220FP, SOT23 и D2PAK. Системы внутренней защиты позволяют устройству работать в случае отключения входа регулировки.

Метка: LM317T

Предлагаемый несложный стабилизатор с регулируемым в широких пределах выходным напряжением и токовой защитой может быть использован как в одноканальных, так и в многока­нальных лабораторных источниках питания.

Выходное напряжение стабилизатора можно регулировать от 3 до 27 В, Наибольший ток нагрузки — 3А. Его прототипом послужил стабилизатор, описанный в статье А.

Уварова “Лабо­раторный источник питания” (“Радио­конструктор”, 2001, …

Постоянная ссылка на это сообщение: https://meandr.org/archives/35226

В радиолюбительской практике в быту и на работе иногда возникает необходимость в резервировании питания различных устройств.

Речь не идет об источниках бесперебойного питания (НРБ), а об аварийном освещении, устройствах охранной сигнализации, любительских метеостанциях, рекламных щитах, радиолюбительских репитерах, туристических палатках, т.е.

в устройствах и системах, где в качестве резервного или основного питания применяется аккумулятор без преобразования …

Читайте также:  Универсальная схема защиты от понижения или повышения напряжения.

Постоянная ссылка на это сообщение: https://meandr.org/archives/23888

Здесь представлена схема регулируемого источника питания 1.2 – 36В, 5А (Рис.1). Рис.1. Принципиальная схема Основные элементы – транзистор Дарлингтона TIP147 PNP (Рис.2 ) и линейный регулируемый стабилизатор положительного напряжения LM317 (Характеристики LM317 представлены в таблице 1). Рис.2. Цоколевка транзистор Дарлингтона TIP147

Постоянная ссылка на это сообщение: https://meandr.org/archives/12584

Данный модуль регулятора напряжения собран на интегральном стабилизаторе LM317T и особых комментариев не требует.

Для управления напряжением используется потенциометр, который подключается к соответствующему разъему на плате. Напряжения поступает на диодный мост выпрямителя (напр.

4 шт 1N4007), конденсатор (1000 мкФ) и так далее, достаточно только подключить выход трансформатора источника переменного тока. Важно, входное напряжение не должно …

Постоянная ссылка на это сообщение: https://meandr.org/archives/10314

Один из важных узлов радиоэлектронной аппаратуры – стабилизатор напряжения в блоке питания. Еще совсем недавно такие узлы строили на стабилитронах и транзисторах.

Общее число элементов стабилизатора было довольно значительным, особенно если от него требовались функции регулирования выходного напряжения, защиты от перегрузки и замыкания выхода, ограничения выходного тока на заданном уровне. С появлением специализированных микросхем ситуация …

Страницы:

Постоянная ссылка на это сообщение: https://meandr.org/archives/8634

Технические особенности

Преобразователь для регулятора lm 317 выступает в качестве важного элемента для корректной работы любого технического оборудования. Процесс функционирования заключается в следующем: устройство преобразовывает подачу электроэнергии, поступающей от централизованной сети, в нужное для пользователя напряжение, позволяющее подключить тот или иной электроприбор. При всем этом, преобразовательный аппарат дополнительно выполняет защитную функцию от вероятности образования короткого замыкания.

Блоки питания подразделяются на 2 вида:

  • регулируемый стабилизатор тока на lm317;
  • импульсный.

Помимо всего, схематические данные, применяющиеся для создания данного агрегата, могут иметь существенные различия, от самых элементарных схем до сложных.

При наличии минимального опыта и знаний, следует начать с изготовления стабилизатора напряжения на lm317 по простым чертежам. Это позволит досконально изучить процесс функционирования и впоследствии создать более усложненную конструкцию.

Стабилизатор тока на lm317

Если доверять отзывам «домашних» мастеров, данный аппарат по функциональности превосходит покупные модификации в несколько раз, как функциональными способностями, так и эксплуатационным сроком.

Мощный, регулируемый блок питания на lm317

Мощный, регулируемый блок питания

Всем привет, сегодня я покажу вам хорошую и мощную схему регулируемого блока питания на микросхеме lm317 и на силовом транзисторе 2SC5200.

Перед вами находится схема данного блока питания она не сложная, но достаточно хорошая и надёжная.

Мощный, регулируемый блок питания на lm317, схема

Диодный мост, я буду использовать GBG1506, он может выдержать аж целых 15 ампер,

диодный мост GBG1506

дальше нам потребуются электролитические и неполярные конденсаторы

Мощный, регулируемый блок питания на lm317

и управлять этим всем будет микросхема lm317

микросхема lm317

Ещё потребуются переменный резистор на 5 кОм, желательно с ручкой

Мощный, регулируемый блок питания на lm317

и мощный транзистор 2SC5200.

транзистор 2SC5200

Также на схемке присутствует защитный диод 1N4007, который будет защищать транзистор от обратных импульсов. Имеется индикаторный светодиод и три резистора на 20 кОм, 220 Ом и 10 кОм.

Паять схему я буду на макетной плате.

Мощный, регулируемый блок питания на lm317

Вот, что в итоге у нас получилось,

но схема будет греться и довольно хорошо, поэтому берём и прикручиваем радиатор, также не забывайте намазать сначала термопасту на диодный мост и на транзистор.

Мощный, регулируемый блок питания на lm317

Если ставить микросхему на общий радиатор, то LM317 надо изолировать при помощи термопрокладки и пластиковой шайбы.

Мощный, регулируемый блок питания на lm317

К диодному мосту припаиваем провода и подключаем их к имеющему у вас трансформатору. Трансформатор может быть любым, от него и будут зависеть выходные характеристики блока питания.

Наконец-то настал момент включения схемы. Вот этот мультиметр измеряет входное напряжение,

Мощный, регулируемый блок питания на lm317

а вот этот напряжение на выходе схемы.

Мощный, регулируемый блок питания на lm317

Максимальное напряжение 24 вольта, но это амплитудные напряжения, поэтому на выходе максимальное напряжение около 18 вольт при входном 20. Минимальное напряжение 1 вольт.

Читайте также:  Маломощный лабораторный источник питания на LM317

Рассмотрим стабилизацию напряжения на выходе, выставляем 12 вольт и на входе изменяем напряжение,

Мощный, регулируемый блок питания на lm317

как вы можете видеть всё стабильно, то же самое я делал и при 6 вольтах, и тоже всё работает стабильно.

Пробуем подключить нагрузку, в моём случае — это нихромовая спираль.

Мощный, регулируемый блок питания на lm317

Выставил на выходе 7 вольт и нагрузил схему, ток почти 6 ампер, напряжение просело на полвольта, в таком режиме радиатор нагрелся, стал тёплый, но что поделать линейный режим.

Мощный, регулируемый блок питания на lm317

Ну и напоследок давайте посмотрим на пульсации схемы, эту проблему можно решить добавив на вход и на выход конденсаторы с большим номиналом, но и без них всё прекрасно работает, пульсации примерно 50 милливольт.

Моё мнение, схема хорошая и легка для повторения, сделает даже начинающий радиолюбитель, тем более можно спаять прямо на макетной плате, успехов Вам.

Простой регулируемый блок питания 0,8-34 В, до 10 А на LM317 с транзистором, схема, пояснение работы.

В этой статье предлагаю разобрать весьма неплохой регулируемый трансформаторный блок питания, линейный стабилизатор которого собран на базе микросхемы LM317. Данный блок питания, при использовании именно таких электронных компонентов, что нарисованы на схеме, способен обеспечить максимальное выходное напряжение до 34.5 вольт. Это напряжение ограничено самой микросхемой линейного стабилизатора напряжения, а именно максимальное выходное напряжение на LM137 это 36 вольт, ну и минус около 0,6-1.5 вольта, которые осядут на база-эмиттерном переходе транзистора. Максимальный ток у блока питания может быть до 10 ампер, но при определенных условиях, о которых будет сказано ниже в этой статье. Коэффициент пульсаций у этого БП равен где-то 0,1%.

Простой регулируемый блок питания 0,8-34 В, до 10 А на LM317 с транзистором, схема

Перечень электронных компонентов, что используются в этой схеме:

Tr1 — трансформатор на 26 вольт и выходной ток до 10 ампер (280 Вт и более)
VD1 — диоды или мост на ток более 10 А и обратное напряжение более 40 В
D1 — микросхема линейного стабилизатора типа LM317, LM338, LM350
VT1 — биполярный транзистор типа КТ819, КТ829 и аналогичные
R1 — 5 кОм
R2, R3 — 240 Ом
R4 — 3-10 кОм
R * — от 1 кОм до 5 кОм подбирается под нужное выходное напряжение
C1 — 5000-10000 мкф и напряжение больше рабочего напряжения
C2 — 10 мкф
C3 — 470 мкф

Сразу стоит заметить для новичков, что это блок питания с линейным стабилизатором напряжения. То есть, при регулировке выходного напряжения все лишнее напряжение просто преобразуется в тепло. Оно оседает на регулируемых силовых компонентах, а именно на микросхеме стабилизатора D1 и силовом биполярном транзисторе VT1. И именно транзистор берет на себя всю лишнюю электрическую энергию и преобразует его просто в тепло, через собственный нагрев корпуса. А это значит, что чем больше тока будет потреблять нагрузка и чем меньше напряжения мы установим на выходе данного блока питания, тем меньше КПД будет этого блока питания. При минимальном напряжении на выходе и максимальном токе этот блок питания становится больше похож на электрический обогреватель. Причем в этом режиме он менее всего экономичен. К сожалению это проблема абсолютно всех линейных стабилизаторов.

Но эту проблему в значительной степени можно исправить если использовать трансформатор с несколькими выходными обмотками. То есть, мы от вторичной обмотки делаем выводы с шагом допустим 5 вольт. Находим подходящий переключатель, который нам будет подключать нужный вывод вторичной обмотки с наиболее подходящим напряжением, что мы будем использовать в конкретном случае, для конкретной нагрузки. Такой вариант переключения напряжений, что далее подается на схему стабилизатора напряжения, делает схему блока питания гораздо экономичнее, значительно повышая ее общий коэффициент полезного действия.

Читайте также:  Зарядное Устройство для любого шуруповерта и не только

Теперь что касается самих рабочих компонентов этой схемы. Чтобы на выходе получить максимальное напряжение до 34.5 вольт и силу тока до 10 ампер понадобится силовой трансформатор мощностью не менее 280 Вт. Почему именно такая минимальная мощность должна быть у трансформатора. Дело в том, что максимальное входное напряжение для микросхемы D1 (LM317) 37 вольт. Но стоит учесть, что это амплитудное значение напряжения, которое будет у нас на выходе диодного моста при наличии сглаживающего конденсатора C1. Как известно, напряжение на выходе трансформатора имеет действующее значение, которое в 1,41 раза меньше амплитудного. То есть, мы 37 вольт делим на 1,41 и получаем около 26 вольт действующего напряжение, которое должна обеспечить нам вторичная обмотка имеющегося трансформатора. Следовательно, 26 вольт умножаем на 10 ампер и получаем мощность 260 Вт, ну и добавим небольшой запас по мощности с учетом различных потерь. И в итоге нам и нужен трансформатор с мощностью не менее 280 Вт. Ну, и как я ранее заметил, хорошо, чтобы он имел отводы от вторичной обмотки с шагом примерно 3-5 вольт, для повышения КПД этой схемы блока питания. Трансформатор лучше использовать тороидальный, он более эффективный, чем другие типы.

Поскольку мы будем работать с током до 10 ампер, то диодный пост также нужен с прямым током не менее 10 А, а лучше брать с запасом где-то 15-20 А. В схеме сглаживающий конденсатор C1 имеет емкость 5000 мкф, хотя лучше все же поставить микрофарад так на 10 000, сглаживание импульсов будет только лучше. Его напряжение должно быть более 35 вольт.

В схеме использована микросхема типа LM317, максимальный ток которой равен 1,5 ампер (если это оригинал, а не Китайская копия). Если у вас есть аналогичные микросхемы стабилизаторов напряжения типа LM338, LM350, рассчитанные на больший ток, то можно в схему поставить и их. Поскольку LM317 может выдержать ток всего лишь до 1,5 А, а мы планируем работать с током до 10 А, то в схему добавлен усилитель тока в виде биполярного транзистора КТ819 или КТ829 (составной). Чтобы убрать дополнительные пульсации напряжения, возникающие на выходе транзистора, в схеме предусмотрена отрицательная обратная связь в виде резистора R3. Именно этот резистор дает сигнал микросхеме, которая делает работу транзистора более стабильной. Резисторы R1 и R2 нужны для нормальной работы самой микросхемы линейного стабилизатора LM317. Напряжение на выходе задается сопротивлением R1. Резистор R4 служит небольшой нагрузкой на выходе блока питания, и также он способствует разряду выходного конденсатора после выключения схемы.

На схеме параллельно резистору R1 можно увидеть еще один резистор, отмеченный звездочкой. Он нужен, чтобы убрать с регулирующего напряжения резистора R1 так называемую мертвую зону. То есть, при работе с более низкими напряжениями (если вы сделаете блок питания на другое, более низкое напряжение) сопротивления резистора в 5 кОм будет много, и на нем появляется участок, при котором напряжение никак не меняется на выходе блока питания. Следовательно, поставив параллельно регулируемому резистору еще одни резистор с подходящим сопротивлением мы уменьшаем его величину и убираем эту самую мертвую зону.

В целом схема полностью рабочая и вполне способна выдавать ток до 10 ампер при условии, что вы будете использовать трансформатор, у которого будут дополнительные отводы на вторичной обмотке. Это нужно, чтобы уменьшить выделение тепла на биполярном транзисторе до минимума. Если же вы попытаетесь делать регулировку выходного напряжения только за счет транзистора, то даже его максимального рабочего тока не хватит, чтобы нормально рассеять все тепло, что на нем оседает. В этом случае он просто у вас сгорит. Чтобы облегчить нормальную работу биполярного транзистора параллельно ему можно поставить еще несколько штук таких же транзисторов, что распределит выделяемое тепло уже по нескольким элементам. Ну, и обязательно, как микросхема стабилизатора LM317, так и транзистор КТ819 должны быть установлены на радиатор с подходящими размерами. Включать схему без охлаждающего радиатора не рекомендуется, поскольку силовые элементы очень быстро выйдут из строя из-за перегрева.

Читайте также:  Простой лабораторный блок питания из старого компьютерного блока питания.

Видео по этой теме:

P.S. Если собрать эту схему с учетом всех замечаний и рекомендаций, что были в этой статье, то данный лабораторный блок питания с регулировкой выходного напряжения будет работать вполне хорошо и надежно. Эта схема уже мной собиралась и ее работа была полностью проверена.

Регулируемый блок питания своими руками

После мультиметра переменный источник питания (также называемый регулируемым блоком питания или лабораторным БП) является одним из самых полезных элементов оборудования, которое необходимо иметь в своей мастерской. Выходное напряжение блоков питания может регулироваться в широком диапазоне от менее 1 вольта до более чем 30 В, в зависимости от того как и по какой схеме он собран.

Регулируемые источники питания используются для питания радиосхем, которые ремонтируем или собираем. При разработке или тестировании устройств возобновляемой энергии можно использовать такой БП для имитации зарядки или разрядки аккумулятора, для настройки контроллера и нагрузки.

Вы можете конечно купить блок питания в магазинах электроники, но лучше построить свой собственный. Так вы чётко будете знать его работу, устройство, а при необходимости (это неизбежно в будущем) почините или улучшите.

Далее рассмотрим две схемы регулируемого блока питания. Обе используют детали, которые элементарно найти в местном магазине электронных компонентов.

Регулируемый блок питания на LM317

Схема блока питания на LM317 с регулировкой

Первая схема это регулятор напряжения на основе LM317. Микросхема LM317 может выдавать до 1,5 А, имеет защиту от короткого замыкания и перегрева. Максимальное входное напряжение составляет 40 вольт постоянного тока, и оно изменяется на выходе до 1,2 вольт. Конечно LM317 следует установить на радиатор (если нагрузка планируется мощная — то большой).

Регулируемый блок питания на LM723

Схема блока питания на LM723 с регулировкой

Также можете собрать схему для более совершенного и мощного регулируемого источника питания, используя микросхему LM723. Помимо регулируемого выходного напряжения, эта схема включает в себя регулируемый предел тока — вы можете ограничить ток, протекающий через тестируемую цепь, тем самым защищая источник питания от короткого замыкания. Параллельно стоящие 4 силовых транзистора увеличивают максимальный ток до 10 ампер (а это уже возможность зарядить авто аккумулятор, обычно средним током 5 А). Силовые транзисторы должны быть установлены на хороший радиатор.

Источник напряжения стабилизатора

Обе схемы стабилизаторов требуют источника питания постоянного тока (то есть подачу на них напряжения), и это напряжение должно быть как минимум на 3 В выше максимального напряжения, которое надо получить от регулируемого блока питания. Поэтому если планируется собрать источник питания, который можно регулировать от 1,2 до 12 вольт, понадобится на входе БП на 15 вольт или более (максимум до 40 вольт, иначе микросхемы сгорят от перегруза).

Схема блока питания постоянного напряжения

Традиционно используют сетевой трансформатор для преобразования сетевого напряжения 220 В до 15 В переменного тока. Затем используем мостовой выпрямитель для преобразования переменного тока в постоянный, а затем несколько фильтрующих конденсаторов для сглаживания пульсаций до чистого постоянного тока. Естественно нужен предохранитель для сетевой стороны.

Но не обязательно брать трансформатор, у большинства есть немало осиротевших импульсных БП которые больше не используются. Эти источники питания в основном от нерабочих мониторов или ноутбуков. У них выходное напряжение 20 В и максимальный ток 4,5 А. А этого более чем достаточно для самодельного переменного источника питания. Использование такого позволит после стабилизатора получать от 1,2 до 17 вольт.

Читайте также:  Универсальный источник питания 0-30 В с регулировкой тока от 0-3 А

Вы также можете подключить более одного источника питания последовательно для более высокого напряжения, например, два 12-вольтовых последовательно соединённые дадут напряжение 24 В, но максимальный ток будет таким, как в блоке питания с наименьшим номиналом мощности.

Прекрасной идеей будет добавить вольтметр и амперметр в самодельный лабораторный блок питания, тем более в магазинах полно готовых цифровых модулей светодиодных А/В-метров, поэтому делать его самому нет смысла. А если не хотите покупать готовый — ставьте обычные стрелочные индикаторы, как на фото.

Мощный, регулируемый блок питания на lm317

Vin (входное напряжение): 3-40 Вольт
Vout (выходное напряжение): 1,25-37 Вольт
Выходной ток: до 1,5 Ампер
Максимальная рассеиваемая мощность: 20 Ватт
Формула для расчета выходного (Vout) напряжения: Vout = 1,25 * (1 + R2/R1)
*Сопротивления в Омах
*Значения напряжения получаем в Вольтах

Данная простая схема позволяет выпрямить переменное напряжение в постоянное благодаря диодному мосту из диодов VD1-VD4, а затем точным подстрочным резистором типа СП-3 выставить нужное вам напряжение в пределах допустимых интегральной микросхемы-стабилизатора.

Регулируемый стабилизатор (1,25-37V) на LM317, диоды fr3002

В качестве выпрямительных диодов взял старые FR3002, которые когда-то давно выпаял из древнейшего компьютера 98-го года. При внушительных размерах (корпус DO-201AD) их характеристики (Uобратное: 100 Вольт; Iпрямой: 3 Ампера) не впечатляют, но мне и этого хватает с головой. Для них даже пришлось расширять отверстия в плате, уж больно выводы у них толстые (1,3мм). Если немного изменить плату в лейоте можно впаять сразу готовый диодный мост.

Регулируемый стабилизатор (1,25-37V) на LM317, радиатор

Радиатор для отведения тепла от микросхемы 317 обязателен, даже лучше небольшой вентилятор поставить. Еще, в месте соединения подложки корпуса TO-220 микросхемы с радиатором капните немного термопасты. Степень нагрева будет зависеть от того, сколько мощности рассеивает микросхема, а также от самой нагрузки.

Регулируемый стабилизатор (1,25-37V) на LM317

Микросхему LM317T я не устанавливал прямо на плату, а вывел от неё три провода, с помощью которых и соединил этот компонент с остальными. Это было сделано для того, чтобы ножки не расшатывались и вследствие чего не были переломанными, ведь данная деталь будет прикреплена к рассеивателю тепла.

Регулируемый стабилизатор (1,25-37V) на LM317, подстроечный резистор

Подстрочный резистор для возможности использования полного вольтажа микросхемы, то есть регулировки от 1,25 и аж до 37 Вольт устанавливаем с максимальным сопротивлением 3432 кОма (в магазине самый близкий номинал 3,3кОм.). Рекомендуемый тип резистора R2: подстрочный многооборотный (3296).

Саму микросхему-стабилизатор LM317T и подобные ей выпускает множество, если не все компании по производству электронных компонентов. Покупайте только у проверенных продавцов, потому что встречаются китайские подделки, особенно часто микросхемы LM317HV, которая рассчитана на входное напряжение аж до 57 Вольт. Опознать ненастоящую микросхему можно по железной подложке, в фейке она имеет множество царапин и неприятный серый цвет, также неправильную маркировку. Еще нужно сказать, что микросхема имеет защиту от короткого замыкания, а также перегрева, но на них сильно не рассчитывайте.

Регулируемый стабилизатор (1,25-37V) на LM317

Не забываем, что данный (LM317Т) интегральный стабилизатор способен рассеивать мощность с радиатором только до 20 Ватт. Плюсами этой распространённой микросхемы являются её маленькая цена, ограничение внутреннего тока короткого замыкания, внутренняя тепловая защита

Платку можно нарисовать качественно даже обычным пергаментным маркером, а потом вытравить в растворе медного купороса/хлорного железа…

Регулируемый стабилизатор (1,25-37V) на LM317, готовая плата

Фото готовой платы.

Регулируемый стабилизатор (1,25-37V) на LM317, готовый стабилизаторРегулируемый стабилизатор (1,25-37V) на LM317, готовый стабилизатор

Как вы знаете, существует множество интегральных микросхем-стабилизаторов напряжения в разных корпусах и с различными характеристики входного и выходного напряжения и тока. Внизу я прикрепил удобную таблицу названия самых распространенных и не только микросхем и их краткие характеристики.

Читайте также:  Принцип работы металлоискателей и их простые схемы.

Регулируемый стабилизатор (1,25-37V) на LM317, параметры lm317

СХЕМА РЕГУЛИРУЕМОГО БЛОКА ПИТАНИЯ НА LM317

Сразу отвечу на вопросы: да, этот блок питания я делал для себя, хоть и есть у меня приличный лабораторный блок; это чисто для питания детских электрических батареечных игрушек, чтоб не дёргать основной мощный. И теперь, когда я вроде оправдался за столь несолидную, как для опытного радиопаятеля конструкцию – можно перейти к подробному её описанию:-)

Схема источника напряжения на ЛМ317

Схема источника напряжения на ЛМ317 с регулировкой

В общем имелась приличная самодельная металлическая коробочка со стрелочным индикатором, в которой давно обитала зарядка (самодельная естественно). Но работала она слабовато, поэтому после покупки цифровой универсальной Imax B6 – внутри неё задумал разместить БП до 12 вольт, чтоб электронные детские игрушки питать (роботы, моторчики и так далее).

СХЕМА РЕГУЛИРУЕМОГО БЛОКА ПИТАНИЯ НА LM317

СХЕМА РЕГУЛИРУЕМОГО БЛОКА ПИТАНИЯ НА LM317

Сначала подбирал трансформатор. Импульсный не хотел ставить – мало ли бахнет вдруг или где коротнёт, вещь-то в детскую комнату планируется. Поставил ТП20-14, который после пары минут и бахнул)) Точнее задымел от межвиткового, так как этот трансформатор валялся лет 20 в тумбочке. Ну ничего – заменил на надёжный китайский 13В/1А от магнитолы какой-то (тоже лет 15 ей было).

СХЕМА РЕГУЛИРУЕМОГО БЛОКА ПИТАНИЯ НА LM317

Следующий этап сборки блока питания – выпрямитель с фильтром. Это значит диодный мост с конденсатором на 1000-5000 микрофарад. Паять его на рассыпухе не хотел – поставил готовую платку.

СХЕМА РЕГУЛИРУЕМОГО БЛОКА ПИТАНИЯ НА LM317

СХЕМА РЕГУЛИРУЕМОГО БЛОКА ПИТАНИЯ НА LM317

Отлично, уже имеем 15 вольт постоянки! Едем дальше… Теперь регулировка этих вольт. Можно было собрать на паре транзисторов простейший регулятор, но чтой-то облом. Самое быстрое решение – микросхема LM317. Всего 3 детали – регулятор переменный, резистор 240 Ом и сама микросхема-стабилизатор, которая на счастье завалялась в коробке. И даже не паянная!

СХЕМА РЕГУЛИРУЕМОГО БЛОКА ПИТАНИЯ НА LM317

Вот только она не заработала… Я сидел и тупо на неё смотрел: неужели дохлая попалась? Сначала трансформатор, теперь она… Нет, решительно непрушный день!

На следующее утро, на трезвую голову, заметил что 2 и 3 выводы перепутаны местами)) Перепаял и всё стало регулироваться. От 1,22 до 12В ровно. Осталось подпаять стрелочный индикатор, переключаемый тумблером как вольт/амперметр и светодиоды индикации питания и выходного напряжения. Просто красный через пару килоом на выход повесил, чтоб было видно примерно что делается, такая себе дополнительная защита от подачи 10 В на 3-х вольтовую игрушку.

СХЕМА РЕГУЛИРУЕМОГО БЛОКА ПИТАНИЯ НА LM317

И о защитах. Их тут нет. Даже при КЗ напряжение проседает и светодиоды тусклеют. Ток замыкания около 1,5 Ампер. Но придумывать электронные предохранители не стал – сам слабенький трансформатор играет роль токоограничителя. Если вам захочится повторить конструкцию по всем правилам – берите схему защиты отсюда.

СХЕМА РЕГУЛИРУЕМОГО БЛОКА ПИТАНИЯ НА LM317

Ещё из особенностей микросхемы отмечу падение напряжения около 2 В. Это не много и не мало – средне, как для таких стабилизаторов.

СХЕМА РЕГУЛИРУЕМОГО БЛОКА ПИТАНИЯ НА LM317

Конденсатор на выходе поставил 47 мкФ на 25 В. Защитный диод ставить не стал, говорят он не обязателен. Резистор переменный 6,8 кОм – но он работает в узком секторе поворота ручки, лучше заменить на 2-3 кОм. Или поставить последовательно ещё один, постоянного сопротивления.

Итоги работы

СХЕМА РЕГУЛИРУЕМОГО БЛОКА ПИТАНИЯ НА LM317

Подведём краткие итоги: схема однозначно рабочая и рекомендована к повторению начинающими мастерами, которые делают первые шаги, или теми кому лень тратить время/деньги на более сложные схемы БП. То, что минимальный порог 1,2 В – не проблема. Я например не помню случая, чтоб мне понадобилось меньше вольта))

Lm317t Характеристики Схема Подключения

Например, мне необходимо ограничить ток потребления светодиодов равный мА. Его мощность выбирается не менее 0,5 Вт; для питания трехватных светодиодов потребуется резистор сопротивлением 1,2 Ом, ток составит 1 А, а мощность рассеивания не менее 1,2 Вт.

Читайте также:  Схема детектора или индикатора короткозамкнутых витков

Недостаток — бОльшее количество элементов, наличие помех. При низком падении lm не способна обеспечить необходимый коэффициент стабилизации, что может приводить к нежелательным пульсациям при работе.
Очень простой регулируемый блок питания на LM317

Для ее работы зная потребляемый светодиодом ток, необходимо подобрать сопротивление подстроечного резистора R1. В момент включения такого источника на его выходе минимальное напряжение, которое плавно увеличивается до установленного 15В по мере заряда конденсатора C1.

Предлагаю вниманию обзор интегрального линейного регулируемого стабилизатора напряжения или тока LM по цене 18 центов за штуку.

Рекомендации по номиналам конденсатора на выходе LM очень впечатляют,- это диапазон от 10 до мкФ.

А началось все с недоумения — почему это на выходе во всех схемах такой низкоомный делитель?

В Datasheets всех производителей есть параметр Adjustment Pin Current ток по входу подстройки. Светодиод будет включаться, с требуемой яркостью, которая не будет зависеть от поданного постоянного питания на вход микросхемы.

Схема простого регулируемого БП на LM317T Часть 1

Похожие статьи

Как проверить lm мультиметром? Мощность рассеивания не более 20 Вт.

Встречается в различных видов корпусов.

В других регуляторах регулирование осуществляется по цепи Отрицательной обратной связи, что максимально улучшает все параметры. Описание и применение

Параметр весьма интересный и важный, определяющий, в частности, максимальную величину резистора в цепи входа Adj. Резистор можно припаять на выводы микросхемы, но не стоит забывать, что через резистор протекает весь ток нагрузки, поэтому при больших токах нужен резистор повышенной мощности.

Простенько и со вкусом,- закрылся себе транзистор при напряжении база-эмиттер ниже 1,25 В и все тут.

Благодаря разбросу, на один нагрузка всегда будет больше чем на другие. И уж точно — лучшую регулировку, а также и широчайший диапазон по типам и номиналам резисторов и конденсаторов.

О принципе регулирования выходного напряжения LM
Стабилизатор тока на LM 317

Мощные аналоги LM317T — LM350 и LM338

Правда, это честно показано на диаграмме Ripple Rejection. Теперь — о самом неприятном, а именно о несоответствии реальных электрических характеристик заявленным.

Это типовая схема стабилизатора напряжения с выходным напряжением 12 В.

Рекомендации по применению защитных диодов для LM носят обще-теоретический характер и рассматривают ситуации, которых не бывает на практике. Самым эффективный способ, это собрать простой стенд используя макетную плату для проверки и запитать все от батарейки,. Для этого в управляющую цепь включаем цепочки из транзисторов и резисторов, как показано на рисунке ниже.

Микросхема LM в корпусе ТО способна стабильно работать при максимальном токе нагрузки до 1,5 ампер. А схемы и данные в его datasheet все те же … Итак, недостатки LM, как микросхемы и ошибки в рекомендациях по ее использованию.

Также легко сделать на этой микросхеме источник с несколькими фиксированными напряжениями, которые можно переключать программно, с помощью микроконтроллера. Конфигурация выводов Типовая схема включения LM Схема регулируемого блока питания на LM будет выглядеть так: Мощность трансформатора Вт, напряжение вторичной обмотки вольт. Следовательно, на вход Vin надо подать больше чем 5 вольт.

Технические характеристики:

Это максимальные значения, которые могут привести к повреждению устройства или повлиять на стабильность его работы. Что увеличивает уровень пульсаций на нагрузке с повышением частоты. А для LM она фактически означает степень собственной ущербности и показывает, как же хорошо LM борется с пульсациями, которые сама же берет с выхода и опять загоняет внутрь самой себя. Тогда схема нашего регулируемого двуполярного источника может выглядеть например так: Здесь дополнительные мощные транзисторы VT1 и VT2 позволяют увеличить выходной ток стабилизаторов. Кроме отечественной интегральной схемы КРЕН12, выпускаются более мощные импортные аналоги, выходные токи которых в раза больше.

Читайте также:  Цифровой пробник на микросхеме К155ЛА8

Стабилизация осуществляется путём изменения сопротивления одного из плеч делителя: сопротивление постоянно поддерживается таким, чтобы напряжение на выходе стабилизатора находилось в установленных пределах. Схема стабилизатора тока на lm Плюс данного стабилизатора в том, что он является линейным и не вносит высокочастотные помехи, например как некоторые импульсные стабилизаторы. Стабилизация и защита схемы Емкость С2 и диод D1 не обязательны. Аналоги lm Иногда найти конкретно требуемую микросхему на рынке не удается возможным, тогда можно воспользоваться подобными ей. Поскольку мы хотим 5 вольт на выходе, мы подадим к регулятору 7 вольт.

Что довольно часто наблюдается при изготовлении мощного светильника на светодиодах. Можно упростить себе жизнь, если использовать микросхему LM — аналог микросхемы LM, но на отрицательное напряжение. Что увеличивает уровень пульсаций на нагрузке с повышением частоты. Схема стабилизатора тока на lm Плюс данного стабилизатора в том, что он является линейным и не вносит высокочастотные помехи, например как некоторые импульсные стабилизаторы. Поэтому вам даже не придется переделывать схему готового устройства с целью подгонки параметров регулятора напряжения или неизменяемого стабилизатора.
Блок питания на LM338T part 1

Техническая документация к электронным компонентам на русском языке.

Мощность рассеивания не более 20 Вт.

А, значит, все рекомендации и особенно схемы приложений, приводимые в datasheets, носят теоретический, рекомендательный характер.

Заинтересовавшихся прошу… Немного теории: Стабилизаторы бывают линейные и импульсные.

А в LM — при снижении выходного напряжение ниже 1,25 В. Надо бы хуже, да некуда. В процессе подбора сопротивлений допускается небольшое отклонение 8…10 мА. Что довольно часто наблюдается при изготовлении мощного светильника на светодиодах.

Его мощность выбирается не менее 0,5 Вт; для питания трехватных светодиодов потребуется резистор сопротивлением 1,2 Ом, ток составит 1 А, а мощность рассеивания не менее 1,2 Вт. Список решаемых задач данного стабилизатора довольно обширен — это и питание различных электронных схем, радиотехнических устройств, вентиляторов, двигателей и прочих устройств от электросети или других источников напряжения, например аккумулятора автомобиля.

Теперь — о самом неприятном, а именно о несоответствии реальных электрических характеристик заявленным. Как вы уже поняли, микросхему необходимо обеспечить хорошим радиатором.

Производители этих компонентов гарантируют более высокую стабильность выходного напряжения, низкий ток регулирования, повышенную мощность с тем же минимальным выходным напряжением не более 1,3 В. Что касается второго параметра Iadj, то это фактически паразитный ток. Предлагаю вниманию обзор интегрального линейного регулируемого стабилизатора напряжения или тока LM по цене 18 центов за штуку. И не удивительно в связи с этим, что в цепи Adj рекомендуется ставить конденсатор С2. Вот только одно маленькое НО … Внутренняя часть LM содержит стабилизатор тока, в котором использован стабилитрон на напряжение 6,3 В.

Список решаемых задач данного стабилизатора довольно обширен — это и питание различных электронных схем, радиотехнических устройств, вентиляторов, двигателей и прочих устройств от электросети или других источников напряжения, например аккумулятора автомобиля. Значит, надо следить не только за максимальным током нагрузки, но и за минимальным тоже? Его мощность выбирается не менее 0,5 Вт; для питания трехватных светодиодов потребуется резистор сопротивлением 1,2 Ом, ток составит 1 А, а мощность рассеивания не менее 1,2 Вт. Затем подключают в схему со светодиодом.
Параллельное включение стабилизаторов …

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: