LM317 / LM350 / LM338 онлайн-калькулятор

LM317T схема включения

В случае если в схеме нужен стабилизатор на какое-то не стандартное напряжение, то прекрасное решение использование популярного интегрального стабилизатора LM317T с характеристиками:

  • способен работать в диапазоне выходных напряжений от 1,2 до 37 В;
  • выходной ток может достигать 1,5 А;
  • максимальная рассеиваемая мощность 20 Вт;
  • встроенное ограничение тока, для защиты от короткого замыкания;
  • встроенную защиту от перегрева.

У микросхемы LM317T схема включения в минимальном варианте предполагает наличие двух резисторов, значения сопротивлений которых определяют выходное напряжение, входного и выходного конденсатора.

У стабилизатора два важных параметра: опорное напряжение (Vref) и ток вытекающий из вывода подстройки (Iadj).
Величина опорного напряжения может меняться от экземпляра к экземпляру от 1,2 до 1,3 В, а в среднем составляет 1,25 В. Опорное напряжение это то напряжение которое микросхема стабилизатора стремиться поддерживать на резисторе R1. Таким образом если резистор R2 замкнуть, то на выходе схемы будет 1,25 В, а чем больше будет падение напряжения на R2 тем больше будет напряжение на выходе. Получается что 1,25 В на R1 складываться с падением на R2 и образует выходное напряжение.

LM317T схема включения простая

Второй параметр – ток вытекающий из вывода подстройки по сути является паразитным, производители обещают что он в среднем составит 50 мкА, максимум 100 мкА, но в реальных условиях он может достигать 500 мкА. Поэтому чтобы обеспечить стабильное выходное напряжение приходиться через делитель R1-R2 гнать ток от 5 мА. А это значит что сопротивление R1 не может больше 240 Ом, кстати именно такое сопротивление рекомендуют в схемах включения из datasheet.
Первый раз, когда я посчитал делитель для микросхемы по формуле из LM317T datasheet, я задавался током 1 мА, а потом я очень долго удивлялся почему напряжение реальное напряжение отличается. И с тех пор я задаюсь R1 и считаю по формуле:
R2=R1*((Uвых/Uоп)-1).
Тестирую в реальных условиях и уточняю значения сопротивлений R1 и R2.
Посмотрим какие должны быть для широко распространенных напряжений 5 и 12 В.

R1, Ом R2, Ом
LM317T схема включения 5v 120 360
LM317T схема включения 12v 240 2000

Но я бы посоветовал использовать LM317T в случае типовых напряжений, только когда нужно срочно что-то сделать на коленке, а более подходящей микросхемы типа 7805 или 7812 нету под рукой.

А вот расположение выводов LM317T:

  1. Регулировочный
  2. Выходной
  3. Входной

Кстати у отечественного аналога LM317 — КР142ЕН12А схема включения точно такая же.

LM317T схема включения выводы

На этой микросхеме несложно сделать регулируемый блок питания: вместо постоянного R2 поставьте переменный, добавьте сетевой трансформатор и диодный мост.

LM317T схема включения с регулировкой

На LM317 можно сделать и схему плавного пуска: добавляем конденсатор и усилитель тока на биполярном pnp-транзисторе.

LM317T схема плавного включения

Схема включения для цифрового управления выходным напряжением тоже не сложна. Рассчитываем R2 на максимальное требуемое напряжение и параллельно добавляем цепочки из резистора и транзистора. Включение транзистора будет добавлять в параллель к проводимости основного резистора, проводимость дополнительного. И напряжение на выходе будет снижаться.

цифровое управление напряжением на LM317T

Схема стабилизатора тока ещё проще, чем напряжения, так как резистор нужен только один. Iвых = Uоп/R1.
Например, таким образом мы получаем из lm317t стабилизатор тока для светодиодов:

На основе стабилизатора легко сделать зарядное устройство для 12 В аккумуляторов, вот что нам предлагает datasheet. С помощью Rs можно настроить ограничение тока, а R1 и R2 определяют ограничение напряжения.

зарядное устройство 12В на LM317T

Если в схеме потребуется стабилизировать напряжения при токах более 1,5 А, то все также можно использовать LM317T, но совместно с мощным биполярным транзистором pnp-структуры.
Если нужно построить двуполярный регулируемый стабилизатор напряжения, то нам поможет аналог LM317T, но работающий в отрицательном плече стабилизатора — LM337T.

LM337T и LM317T схема включения с транзистором

Но у данной микросхемы есть и ограничения. Она не является стабилизатором с низким падением напряжения, даже наоборот начинает хорошо работать только когда разница между выходным и выходным напряжением превышает 7 В.

Если ток не превышает 100мА, то лучше использовать микросхемы с низким падением LP2950 и LP2951.

Мощные аналоги LM317T — LM350 и LM338

Если выходного тока в 1,5 А недостаточно, то можно использовать:

  • LM350AT, LM350T — 3 А и 25 Вт (корпус TO-220)
  • LM350K — 3 А и 30 Вт (корпус TO-3)
  • LM338T, LM338K — 5 А
Читайте также:  Расчет диаметра провода для плавких предохранителей

Производители этих стабилизаторов кроме увеличения выходного тока, обещают сниженный ток регулировочного входа до 50мкА и улучшенную точность опорного напряжения.
А вот схемы включения подходят от LM317.

31 thoughts on “ LM317T схема включения ”

Для lm317 datasheet от TI тут.
Кому сложно читать datasheet на английском, то можно посмотреть документацию на русском для отечественного аналога КР142ЕН12А.

Кроме мощных аналогов, есть и маломощные LM317L рассчитанные на ток не более 0,1 А, в корпусах SOIC-8 и TO-92.

  • LM317LM — в поверхностном корпусе SOIC-8;
  • LM317LZ — в штырьевом корпусе TO-92.

lm317l_pinout

Не забудьте установить микросхему на радиатор, надо помнить, что корпус не изолирован от вывода. Чем больше падение напряжения на микросхеме — разница между входным и выходным напряжением, тем меньше максимальная мощность.

Я бы уточнил, что от падения напряжения зависит «максимальная выходная мощность».
А максимальная мощность рассеиваемая на микросхеме зависит от корпуса и эффективности охлаждения.

Макс. мощность, рассеиваемая микросхемой — паспортная величина и не может быть превышена при любом охлаждении.

Оверклокеры с таким утверждением не соглясятся 🙂
Да я и не призываю «разгонять» стабилизаторы напряжения, даже наоборот: соблюдение рекомендаций производителя компонентов, важное условие надежной работы электронного устройста.
Если невозможно или слишком дорого обеспечивать надежное охлаждение, то нужно снижать планку максимально возможной мощности. А определить эту максимальную мощность можно зная максимально допустимую температуру кристалла, максимальную температуру окружающей среды и все тепловые сопротивления от кристалла до окружающей среды.

Есть паспортная максимальная мощность, которая кстати зависит от корпуса стабилизатора. А есть реальная максимальная мощность, которая получится при реальном максимальном напряжении и реальном максимальном токе. Так вот эта мощность нисколько не паспортная величина.

Максимальная мощность рассеивания по паспорту — это та, которую в состоянии рассеивать корпус устройства в нормальных условиях на протяжении длительного времени. Под НУ подразумевается температура в 20 цельсиев и влажность 85% при давлении 760 мм и отсутствие преград естественной циркуляции воздуха (плюс/минус 5%). Под длительным временем — не менее времени Максимальная мощность рассеивания по паспорту — это та, которую в состоянии рассеивать корпус устройства в нормальных условиях на протяжении длительного времени. Под НУ подразумевается температура в 20 цельсиев и влажность 85% при давлении 760 мм и отсутствие преград естественной циркуляции воздуха (плюс/минус 5%). Под длительным временем — минимальное время наработки на отказ, указанное в паспортных данных.

Тепловая и электрическая мощности — это немного разные параметры, хотя и взаимосвязанные.

Всегда относился к данной микросхеме, как к стабилизатору для начинающих, которые и запитывать от нее будут такие-же устройства.
Главную, на мой взгляд, мысль данной статьи: «…использовать в случае типовых напряжений, только когда…» — надо выделить жирным. Ее же, в таких случаях, не использовать вообще. Применять можно в малоточных регуляторах, где ни КПД, ни прецизионность стабилизации на динамическую нагрузку не важны.
Использование токовых усилителей, как на последней схеме, рентабельно применять только для фиксированных напряжений.

Любопытно вот, насколько критично включение танталовых конденсаторов на входе и выходе LM317, как то рекомендует даташит? Никогда не шунтировал ее входы/выходы чем-то лучшим чем самые обычные электролитические конденсаторы плюс (иногда) керамика. И ни разу не получил самовозбуждения. То же самое с LM7805 и LM7812 (и с их отечественными аналогами). Как только не изгалялся, даже подключал конденсаторы длинными проводами. Прокатывало, ни один стабилизатор не «завелся». Разработчики перестраховались или рекомендация относительно танталовых конденсаторов непосредственно возле выводов микросхемы касается каких-то особых условий эксплуатации?

В некоторых схемах для некоторых задач (схемы с аудиоусилением, например) шумы стабилизатора заметны даже на слух. В некоторых других частных случаях из-за «шума» работы стабилизатора возникали нежданчики, которые не устранялись конденсаторами для «ЦП или ОЗУ по питанию». Для описания ситуации, когда такое происходит нужен «талмуд» листов пот тысячу. Производитель , который получал недоумённо-ругательные «комментарии» разработчиков — подстраховалсяотмазался коротким упоминанием о необходимости конденсаторов.

Действительно, странноватая рекомендация… Особенно, если учесть, что стоимость танталовых конденсаторов, превышает стоимость самой микросхемы, как правило. 317-ю использовал редко, а вот 7805 и 7812 — десятками, и никогда проблем, обусловленных отсутствием редкоземельных и драгсодержащих элементов, не было. Присоединяюсь к удивлению, так как никаких особых условий использования, придумать не могу. Стабильный стабилизатор, вот и весь каламбур ) ЦП или ОЗУ по питанию подстраховать, это еще могу понять, а его… не могу.

Читайте также:  Калькулятор расчёта частоты TL494

Отличая микросхема.Так и хочется поехать , купить и спаять что-нибудь. На этапе разработке часто не хватает такого , чтобы напряжением поиграть , двуполярное сделать. Да и помощнее есть устройства с таким же включением.

Как можно сделать схему, чтобы было два режима стабилизации тока. У меня к одной лампе подходит один плюс и два минуса. Нужно, чтобы по одному минусу было ярко, а по другому тускло.

Микросхема о которой ведется речь — регулируемый стабилизатор напряжения, не тока. Для вашей задачи подойдут обычные биполярные транзисторы используемые в качестве усилителей тока. Два корпуса. Их мощность должна соответствовать мощности вашей лампы, а напряжение — питающему напряжению. Ток, обеспечивающий желаемую тусклость задайте базовым резистором, можно подстроечным. И, желательно, в вопрос вкладывать побольше информации… лампа, а какая? Много их, разных.

А через диод подай отрицательный полупериод с трансформатора -! Будет тебе «ночничок», и не надо три провода тянуть через подушку…

Хочу собрать на LM317 зарядное устройство для NI-MH аккумалятора (одного). На входе — 5 вольт, на выходе — 1,5 вольт. Схему уже нашел. Но там 5 вольт берут с USB порта компьютера. А можно ли взять 5 вольт с зарядки от мобильного телефона? И, наверное, нужно выбрать такую зарядку, у которой выходной ток — не меньше, чем ток зарядки аккумулятора?

Конечно, вполне можно питать и от зарядки. Да, и ток источника должен быть не меньше тока потребителя.

Про ток зарядки от мобильника можете не беспокоиться — вряд ли вам удастся найти такую, ток которой был бы ниже, чем ток выдаваемый с порта USB. Как правило, он составляет 0,6-0,7 А. Этого вполне достаточно для зарядки не менее, чем 5-амперного аккумулятора. Если нужно больше, то зарядное просто не подойдет — это настолько стандартизированное изделие, что больше, чем на 0,75 А — вам вряд ли удастся найти.

Да есть же уже ЗУ с токами 1 и 2 А для зарядки смартфонов или планшетов, как раз многие из них уже с портом usb. Но тут уже стоит обратить внимание на качественный кабель, или спаять самому, стандартные китайские кабели такие токи редко способны передать

Вы немного путаете порт USB с его разъемом. Понимаете, USB, в первую очередь — Serial Bus, а уж во вторую — Universal. Вторая причина и послужила столь частому, но не совсем профильному использованию данного Разъема в различных блоках питания и зарядных устройствах, что не оснащает их, непосредственно Портом. А что касается кабелей USB, то они, по определению, должны соответствовать стандартам своего класса (1.1; 2.0; 3.0), а не тому, что вы подразумеваете под «китайским стандартом».

Частоту бы узнать максимальную, с которой эта микросхема работает. Если у меня идет коммутация импульсов с частотой 10 КГц, будет ли она держать ток каждого импульса в пределах значений, заданных резистором?
И как лучше её расположить на схема? Рис прилагаю.
https://sun9-1.userapi.com/c639822/v639822216/5396d/MX1daHe-rjs.jpg

Этот стабилизатор для работы на постоянном токе.
Если нужно получить пульсирующий ток, то правильнее будет «закорачивать» оптроном нагрузку.
Но применять в таком случае интегральный стабилизатор, я бы не стал. А собрал бы простенький стабилизатор на транзисторе и стабилитроне. Например такой: http://hardelectronics.ru/drajver-dlya-svetodiodov.html
Ну не предназначены интегральные стабилизаторы постоянного напряжения, для стабилизации пульсирующего тока.

Схема включения для цифрового управления выходным напряжением тоже не сложна. Рассчитываем R2 на максимальное требуемое напряжение и параллельно добавляем цепочки из резистора и транзистора. Включение транзистора будет добавлять в параллель к проводимости основного резистора, проводимость дополнительного. И напряжение на выходе будет снижаться.

Какой ток или мощность потребляет сама м-схема в режиме холостого хода без нагрузки?

Так и не понял, как регулировать выходное напряжение

не понял устройство, разъясни (25.04.19 )

Народ, Спс за такую статью, буду курить, может осилю. Собрал пока простые стабилизаторы напряжения в авто для светодиодов. Надо для мощных до 30-50 вт собрать с о стабилизацией и тока.

Читайте также:  Калькулятор параллельного соединения резисторов

привет есть схема регулятора оборотов кулеров на lm317 где резистор между выводом adj и выходом 1килоом https://aliexpress.ru/item/32788208721.html в описании этого усстройства есть схема я такое устройство хотел применить для регулировки оборотов кулера 24V фена самодельной паяльной станции после изменения сопротивлений в схеме

привет есть схема регулятора оборотов вентиляторов на lm317 где резистор между выводом adj и выходом 1 кило ом https://aliexpress.ru/item/32788208721.html в описании этого устройства есть схема я такое устройство хотел применить для регулировки оборотов турбины 24V фена самодельной паяльной станции после изменения сопротивлений в схеме

Здравствуйте. В чём разница между LM7805 и LM7905

Вот схема с отрицательным управлением будет работать как полноценный лбп от0до29.5 Вольта а силу тока через задающий резистр от 5 ват и более

LM317 / LM338 / LM350 Voltage Regulator Calculator

The LM317 / LM338 / LM350 family of adjustable 3-terminal positive voltage regulators can take a input of 3 to 40 Volts DC and provide a regulated voltage over a 1.2V to 37V output range. The LM317 voltage regulators can provide up to 1.5 Amperes (A) of output current. Where greater output current is required, the LM350 series regulators are suitable up to 3A and the LM338 series voltage regulators for up to 5A of output.

The LM317 / LM338 / LM350 voltage regulators are exceptionally easy to use, requiring only two external resistors to set the regulated output voltage. You can expect performance of both the line and load regulation using the LM317 / LM338 / LM350 adjustable voltage regulators over that of standard fixed voltage regulator. The LM317 / LM338 / LM350 voltage regulators offer full overload protection. Normally, no capacitors are needed unless the device is situated more than 150 mm (6 inches) from the input filter capacitors in which case an input bypass capacitor is required. An optional output capacitor can be added to improve transient response. The adjustment terminal of the regulator can be bypassed to achieve very high ripple rejection. Refer to the adjustable regulator data sheets below for more information about the LM317 / LM338 / LM350 adjustable voltage regulators.

LM317 Voltage Regulator (TO-220 Plastic Package)

Photograph 1: LM317 Voltage Regulator (TO-220 Plastic Package)

LM317 / LM338 / LM350 Voltage Regulator Calculator

You can use this Voltage Regulator Calculator to vary the value of the program resistor (R1) and output set resistor (R2) and calculate the output voltage for the LM317 / LM338 / LM350 family of three terminal adjustable voltage regulators. This Voltage Regulator Calculator will work for all voltage regulators with a reference voltage (VREF) of 1.25. Typically, the program resistor (R1) is set at 240 ohms for the LM117, LM317, LM138 and LM150 regulators. For the LM338 and LM350 regulators, 120 ohms is typically used for the program resistor R1. However, other values such as 150 or 220 ohms can also be used for R1. The LM317 / LM338 / LM350 series of voltage regulators can also be configured to regulate current in a circuit. For information about current regulation with these integrated circuit (IC) regulators see the LM317 / LM338 / LM350 Current Regulator Calculator.

LM317 / LM338 / LM350 Voltage Regulator Calculator Schematic

Figure 1: LM317 / LM338 / LM350 Voltage Regulator Calculator Schematic

LM317 / LM338 / LM350 Voltage Regulator Calculator

To determine the output voltage, enter values for the program (R1) and set (R2) resistors and hit the “Calculate” button.

NOTE: this online voltage regulator calculator requires that JavaScript be enabled on your browser.

LM317 / LM338 / LM350 Voltage Regulator Calculator

UPDATE – the LM317 / LM338 / LM350 current regulator calculator has been moved to it’s own page, LM317 / LM338 / LM350 Current Regulator Calculator. Please update your bookmarks.

Datasheets – LM317 / LM338 / LM350 3-Terminal Adjustable Regulator

    – (PDF 1MB) – March 2010 – National Semiconductor – (PDF 400kB) – May 1998 – National Semiconductor – (PDF 400kB) – May 1998 – National Semiconductor

LM317 / LM338 / LM350 Voltage Regulator Circuits

The following schematics show typical circuit applications for the LM317 / LM338 / LM350 voltage regulators. Note: The dropout voltage of the IC regulator is about 1.5 to 2.5 Volts, dependent on the output current (IOUT). Therefore, the input voltage to the LM317 / LM338 / LM350 regulator will need to be at least 1.5V to 2.5V greater than the desired output voltage. Plan to be about 3V about the desired output voltage. You don’t want to use too high an input voltage as the excess will need to be dissipated as heat through the regulator. See the voltage regulator datasheets above for specific details regarding the dropout voltage and heatsink requirements.

Читайте также:  Калькулятор последовательного соединения резисторов

1.2 to 25V Adjustable Voltage Regulator Schematic for LM317 / LM338 / LM350

Figure 2: 1.2 to 25V Adjustable Voltage Regulator Schematic for LM317 / LM338 / LM350

When external capacitors are used with a voltage regulator it may be necessary to use protection diodes to prevent the capacitors from discharging through low current points into the voltage regulator. Even small capacitors can have a low enough internal series resistance to be able to deliver 20A spikes when shorted. Although the surge is very short in duration, there is enough energy to damage parts of the regulator IC. No protection diodes are required for output voltages of less than 25V or greater than 10 uF capacitance. Figure 3 shows the LM317 / LM338 / LM350 with protection diodes included for use with voltage outputs greater than 25V and high values of output capacitance.

LM317 / LM338 / LM350 Voltage Regulator Schematic with Protection Diodes

Figure 3: LM317 / LM338 / LM350 Voltage Regulator Schematic with Protection Diodes

Solid tantalum capacitors can be used on the voltage output to improve the ripple rejection of the voltage regulator.

LM317 / LM338 / LM350 Adjustable Voltage Regulator Schematic with Improved Ripple Rejection

Figure 4: LM317 / LM338 / LM350 Adjustable Voltage Regulator Schematic with Improved Ripple Rejection

12 Volt Battery Charger Circuit with LM317 regulator

Figure 5: 12 Volt Battery Charger Circuit with LM317 regulator

Video Tutorial – LM317 Adjustable Voltage Regulator

LM317 Adjustable Voltage Regulator Tutorial – Uploaded by Afrotechmods on Apr 17, 2011 (YouTube) – 4 minutes, 8 seconds.

LM317 Adjustable Voltage Regulator Tutorial

Voltage and Current Regulator Links

Last update 6 January 2014. Created 28 July 2007. © diyAudioProjects.com – Terms of Service – Privacy Policy.

LM317 регулируемый стабилизатор напряжения и тока. Характеристики, онлайн калькулятор, datasheet

LM317t способен обеспечить плавную регулировку выходного напряжения от 1,2 В до 37 В с током нагрузки до 1,5 А. Также данный стабилизатор может работать в качестве стабилизатора тока. Далее в статье приведем примеры подключения LM317.

Отличительные особенности LM317t

  • Обеспечения выходного напряжения от 1,2 до 37 В.
  • Ток нагрузки до 1,5 A.
  • Наличие защиты от возможного короткого замыкания.
  • Надежная защита микросхемы от перегрева.
  • Погрешность выходного напряжения 0,1%.

Цоколевка LM317

Как и большинство стабилизаторов напряжения, микросхема LM317 имеет три вывода:

Ниже представлена распиновка LM317 в наиболее распространенных корпусах:

Блок-схема LM317

Здесь представлена внутренняя схема LM317:

блок-схема lm317

Характеристики LM317t

Приведем основные параметры стабилизатора LM317:

  • Входное напряжение, max: 40 В.
  • Выходное напряжение, min: 1,25 В.
  • Опорное напряжение (Vref): от 0,1 до 1,3 В.
  • Ток нагрузки, max: 1,5 А.
  • Нестабильность выходного напряжения: 0,1 %.
  • Ток Adj: 50…100 мА.
  • Корпус: TO-220, TO-92, TO-3, D2PAK.

Подробные параметры смотрите в datasheet на русском языке, который можно скачать в конце статьи.

Аналог LM317

Ниже представлен полный список зарубежных и отечественных аналогов стабилизатора LM317:

  • отечественный аналог LM317: 142ЕН12,1157ЕН1.
  • зарубежный аналог LM317: GL317, SG31, SG317, UPC317, ECG1900, SG317T, LM317K, SG317K, UA317KC, UC317K, LM317LD, KA317LZ, LM317LZ, LM31MDT, KA317M, ECG956, KA317M, SG317P, SG317T, SP900, UA317UC, UC317T, UPC317H.

Схема подключения LM317 – стабилизатор напряжения

Как было сказано выше, LM317 может обеспечить любое напряжение на выходе в диапазоне от 1,2 до 37 В. Для того чтобы получить необходимое выходное напряжение, нам необходимо подключить всего два резистора, образующие делитель напряжения.

В зависимости от сопротивления этих резисторов можно получить разное выходное напряжение. Ниже приведена типовая схема подключения LM317 в качестве стабилизатора напряжения, взятая из datasheet:

Формула расчета выходного напряжения следующая:

VO = VREF * (1 + R2/R1)

  • VO — выходное напряжение.
  • VREF — опорное напряжение по datasheet (1,25 В).
  • R2 и R1 — резисторы делителя напряжения.
Читайте также:  Калькулятор резистора для светодиода

Сопротивление резисторов для разных напряжений:

  • 3 вольта — R1 (240 Ом) и R2(336 Ом).
  • 3,3 вольта — R1 (240 Ом) и R2(394 Ом).
  • 5 вольт — R1 (240 Ом) и R2(720 Ом).
  • 9 вольт — R1 (240 Ом) и R2(1488 Ом).
  • 12 вольт — R1 (240 Ом) и R2(2064 Ом).
  • 24 вольта — R1 (240 Ом) и R2(4368 Ом).

Онлайн калькулятор LM317 — расчет напряжения

Для облегчения вычислений ниже представлен онлайн калькулятор для расчета сопротивления резисторов стабилизатора LM317. В данном калькуляторе предусмотрено два варианта расчета:

  • Первый вариант: зная необходимое выходное напряжение и сопротивление резистора R1 можно рассчитать сопротивление резистора R2.
  • Второй вариант: зная сопротивления обоих резисторов R1 и R2 можно рассчитать выходное напряжение.

Схема подключения LM317 – стабилизатор тока

LM317 может работать и в качестве стабилизатора тока. Стабилизатор тока, как правило, используют для питания светодиодов. Все что нужно для стабилизации тока — это LM317 и один постоянный резистор.

Ниже приведена типовая схема подключения LM317 в качестве стабилизатора тока, взятая из datasheet:

Формула расчета тока стабилизации следующая:

IO = VREF /R1

  • IO — выходной ток.
  • VREF — опорное напряжение по datasheet (1,25 В).
  • R1 — сопротивление резистора.

Онлайн калькулятор LM317 — расчет тока

Для облегчения вычисления ниже представлен онлайн калькулятор для расчета тока стабилизатора LM317:

Для упрощения расчета номинала резистора можно использовать несложный калькулятор, который поможет рассчитать необходимые номиналы не только для LM317, но и для L200, стабилитрона TL431, M5237, 78xx.

Типовая схема включения LM317t

Типовая схема включения LM317 из datasheet

примечание к схеме

  • Резисторы R1 и R2 необходимы для установки выходного напряжения.
  • Конденсатор Cadj рекомендуется для подавления пульсаций. Предотвращает усиление пульсаций при увеличении выходного напряжения.
  • Конденсатор C1 рекомендуется если LM317 не находится в непосредственной близости возле конденсаторов фильтра источника питания. Керамический или танталовый конденсатор емкостью 0,1 мкФ или 1 мкФ будет достаточным.
  • Конденсатор Co улучшает переходную характеристику, но не влияет на стабильность.
  • Рекомендуется использовать защитный диод VD2, если используется Cadj.
  • Рекомендуется использовать защитный диод VD1, если используется Cо.

Примеры применения стабилизатора LM317

Далее приведем несколько схем включения LM317, которые могут пригодиться в повседневной жизни радиолюбителя.

Регулируемый блок питания на lm317

Эта схема линейного блока питания с регулировкой от 1,5 В до 30 В. Напряжение со вторичной обмотки трансформатора сначала выпрямляется диодным мостом, далее поступает на вход стабилизатора LM317.

Изменяя сопротивление переменного резистора R1 производиться регулировка выходного напряжения. Конденсаторы в данной схеме являются фильтрующими.

Источник питания на 5 Вольт с электронным включением

Блока питания на 15 вольт с плавным пуском

Ниже приведена схема блока питания на 15 вольт с плавным запуском. Конденсатор C2 в сочетании с транзистором VT1 обеспечивает плавную подачу питания.

В начале конденсатор не заряжен, поэтому начальное выходное напряжение будет равно:

Vвых = V C1 + V BE + 1,25 В = 0 В + 0,65 В + 1,25 В = 1,9 В.

По мере увеличения напряжения на конденсаторе Vвых возрастает с той же скоростью. Когда выходное напряжение достигает значения, определяемого резисторами R1 и R2, транзистор VT1 отключается. Конечно же выходное напряжение можно установить любое, подобрав соответствующее сопротивление резистора R1.

Схема регулятора переменного напряжения

Два стабилизатора LM317 могут регулировать как положительные, так и отрицательные полупериоды синусоидального входного напряжения:

Схема регулятора переменного напряжения

Схема зарядного устройства на 6 В с ограничением по току

По мере увеличения зарядного тока напряжение на резисторе R3 увеличивается до тех пор, пока транзистор VT1 не начнет потреблять ток от регулировочного вывода ADJ стабилизатора LM317.

Напряжение на выводе ADJ падает, и, следовательно, выходное напряжение уменьшается до тех пор, пока транзистор VT1 не перестанет проводить ток.

Схема параллельного подключения нескольких LM317 с током 4 А

Данная схема параллельного соединения LM317 обеспечивает выходной ток на уровне 4 А, имея при этом возможность регулировать выходное напряжение с помощью переменного резистора R8 (1,5 кОм на схеме).

Схема параллельного подключения нескольких LM317 с током 4 А

Схема сильноточного регулятора LM317 с внешним транзистором

Транзистор VT1 (TIP73) в верхней части схемы обеспечивает более высокие токи на выходе стабилизатора, чем это может обеспечить LM317. При этом схема сохраняет выходное напряжение на уровне, которое определяется резисторным делителем R5 и R3.

Стабилизаторы тока на lm317, lm338, lm350 и их применение для светодиодов

В последнее время интерес к схемам стабилизаторов тока значительно вырос. И в первую очередь это связано с выходом на лидирующие позиции источников искусственного освещения на основе светодиодов, для которых жизненно важным моментом является именно стабильное питание по току. Наиболее простой, дешевый, но в то же время мощный и надежный токовый стабилизатор можно построить на базе одной из интегральных микросхем (ИМ): lm317, lm338 или lm350.

Читайте также:  Калькулятор расчета выпрямителя для Блок питания

Datasheet по lm317, lm350, lm338

Прежде чем перейти непосредственно к схемам, рассмотрим особенности и технические характеристики вышеприведенных линейных интегральных стабилизаторов (ЛИС).

* – зависит от производителя ИМ.

Во всех трех микросхемах присутствует встроенная защита от перегрева, перегрузки и возможного короткого замыкания.

Lm317, самая распространенная ИМ, имеет полный отечественный аналог — КР142ЕН12А.

варианты корпуса

Выпускаются интегральные стабилизаторы (ИС) в монолитном корпусе нескольких вариантов, самым распространенным является TO-220. Микросхема имеет три вывода:

  1. ADJUST. Вывод для задания (регулировки) выходного напряжения. В режиме стабилизации тока соединяется с плюсом выходного контакта.
  2. OUTPUT. Вывод с низким внутренним сопротивлением для формирования выходного напряжения.
  3. INPUT. Вывод для подачи напряжения питания.

Схемы и расчеты

Наибольшее применение ИС нашли в источниках питания светодиодов. Рассмотрим простейшую схему стабилизатора тока (драйвера), состоящую всего из двух компонентов: микросхемы и резистора. На вход ИМ подается напряжение источника питания, управляющий контакт соединяется с выходным через резистор (R), а выходной контакт микросхемы подключается к аноду светодиода.

Если рассматривать самую популярную ИМ, Lm317t, то сопротивление резистора рассчитывают по формуле: R=1,25/I (1), где I – выходной ток стабилизатора, значение которого регламентируется паспортными данными на LM317 и должно быть в диапазоне 0,01-1,5 А. Отсюда следует, что сопротивление резистора может быть в диапазоне 0,8-120 Ом. Мощность, рассеиваемая на резисторе, рассчитывается по формуле: PR=I 2 ×R (2). Включение и расчеты ИМ lm350, lm338 полностью аналогичны.

Полученные расчетные данные для резистора округляют в большую сторону, согласно номинальному ряду.

Постоянные резисторы производятся с небольшим разбросом значения сопротивления, поэтому получить нужное значение выходного тока не всегда возможно. Для этой цели в схему устанавливается дополнительный подстроечный резистор соответствующей мощности. Это немного увеличивает цену сборки стабилизатора, но гарантирует получение необходимого тока для питания светодиода. При стабилизации выходного тока более 20% от максимального значения, на микросхеме выделяется много тепла, поэтому ее необходимо снабдить радиатором.

Онлайн калькулятор lm317, lm350 и lm338

Допустим, необходимо подключить мощный светодиод с током потребления 700 миллиампер. Согласно формуле (1) R=1,25/0,7= 1.786 Ом (ближайшее значение из ряда E2—1,8 Ом). Рассеиваемая мощность по формуле (2) будет составлять: 0.7×0.7×1.8 = 0,882 Ватт (ближайшее стандартное значение 1 Ватт).

На практике, для предотвращения нагрева, мощность рассеивания резистора лучше увеличить примерно на 30%, а в корпусе с низкой конвекцией на 50%.

Кроме множества плюсов, стабилизаторы для светодиодов на основе lm317, lm350 и lm338 имеют несколько значительных недостатков – это низкий КПД и необходимость отвода тепла от ИМ при стабилизации тока более 20% от максимального допустимого значения. Избежать этого недостатка поможет применение импульсного стабилизатора, например, на основе ИМ PT4115.

Стабилизатор тока на LM317 для светодиодов

Рассмотрим самый простой вариант изготовления светодиодного драйвера своими руками с минимальными затратами времени. Для расчёта стабилизатора тока на LM317 для светодиодов используем калькулятор, которому необходимо указать требуемую силу тока для LED диодов. Предварительно составьте схему включения светодиодов, учитывая максимальную мощность микросхемы и блока питания для светодиодов. Заранее поищите систему охлаждения для всей конструкции.

  • 1. Схема подключения
  • 2. Пример расчётов и сборки
  • 3. Основные электрические характеристики
  • 4. Импульсные драйверы

Калькулятор

Схема подключения

О различных способах питания светодиодов от 12 и 220 вольт прочитайте в статье «Как подключить светодиод«.

Для изготовления стабилизатора тока на LM317 с возможностью регулирования, вместо постоянного резистора поставить мощное переменное сопротивление. Номинал переменного сопротивления можно вычислить, указав калькулятору границы регулирования. Сопротивление может быть от 1 до 110Ом, это соответствует максимальному и минимальному. Но рекомендую отказаться от регулировки Ампер в нагрузке переменным сопротивлением. Правильно реализовать будет сложно и лишком большой будет нагрев.

Мощность постоянного резистора для стабилизатора тока по рассеиванию тепла должна быть с запасом, вычисляется по формуле:

  • I² * R = Pвт
    сила тока в квадрате умноженное на сопротивление резистора.
Читайте также:  Калькулятор 555 таймера

В качестве блока питания можно использовать трансформаторный или импульсный источник напряжения с полярным напряжением. В качестве выпрямителя лучше использовать классический диодный мост, после которого установлен конденсатор большой емкости.

Регулятор тока на LM317 LM317T работает по линейному принципу, поэтому может достаточно сильно нагреваться из-за невысокого КПД. Наличие приличного радиатора обязательно. Если контроль нагрева показал низкую температуру нагрева, то его можно уменьшить.

Если количество Ампер требуется более 1,5А, то в стандартную схему надо добавить пару элементов. Можно получить до 10А, установив мощный транзистор KT825A и резистор на 10ом.

Этот вариант подходит для тех, у кого под рукой нет LM338 или LM350.

Вариант стабилизатора тока на 3А сделан на транзисторе КТ818, Амперы в нагрузке регулируются и рассчитывается во всех схемах одинаково на калькуляторе.

Пример расчётов и сборки

Если собрать очень хочется а подходящего блока питания нет, то есть несколько вариантов это решить. Выменять у соседа или подключить схему к батарее на 9V типа Крона. На фото видно всю схему в сборе со светодиодом.

Если для светодиодов необходим 1А, то указываем это в калькуляторе и получаем результат 1,25ом. Резистора точно такого номинала нет, поэтому устанавливаем подходящий с номиналом в сторону увеличения Ом. Второй вариант, это использовать параллельное и последовательное подключение резисторов. Правильно подключив несколько сопротивлений получим необходимое количество Ом.

Ваши стабилизаторы тока на LM317 будут похожи на ниже представленные изделия.

А если вы страдаете полным светодиодным фанатизмом, то будет выглядеть так.

Основные электрические характеристики

Настоятельно рекомендую не эксплуатировать LM317 на предельных режимах, китайские микросхемы не имеют запаса прочности. Конечно есть встроенная защита от короткого замыкания и перегрева, но не надейтесь что она будет срабатывать каждый раз.

В результате перегрузки может выгореть не только ЛМ317 но и то что к ней подключено, а это уже совсем другой ущерб.

Основные параметры LM317:

  1. входное до 40В;
  2. нагрузка до 1,5А;
  3. нагрев до 125°;
  4. регулятор КЗ.

Если нагрузки в 1А вам будет недостаточно, то можно применить более мощные модели стабилизаторов LM338 и LM350, 5А и 3А соответственно.

Внешний вид LM338

Внешний вид LM338

Для улучшения теплоотдачи увеличен корпус TO-3, такой часто встречается у советских транзисторов. Но выпускается и в малом корпусе TO-220, рассчитанном на меньшие нагрузки.

Параметры LM338:

  1. входное до 32V;
  2. нагрузка до 5А;
  3. защита от перегрева и короткого замыкания.

Расположение контактов на LM338

Расположение контактов на LM338

Импульсные драйверы

Благодаря китайскому трудолюбию блоки питания, стабилизаторы тока и напряжения можно купить в зарубежных интернет-магазинах по 50-150руб. Регулировка приводится небольшим переменным сопротивлением, при 2-3 Амперах они не требуют радиатора для охлаждения контроллера драйвера. Заказать можно например на популярном базаре Aliexpress.com Основной недостаток, это ждать 2-4 недели, но цена самая низкая, можно брать сразу полкило.

Часто ищу на Авито в своём городе, способ быстрый и недорогой. Я и многие другие заказывают стабилизаторы с запасом, вдруг будут неисправные. Затем лишнее продают по объявлениям, и всегда можно поторговаться.

Здравствуйте! мне понравилась схема токового стабилизатора в паре с транзистором кт818. а можно ли Вас попросить нарисовать схему с транзистором кт 808 или 2n3055, у меня просто 10 штук дома лежит. Спасибо.

Нарисовать мало, схему надо опробовать и настроить. Лучше купить обычный KT818.

Здавствуйте, спасибо вам за ценные статьи и советы, узнал много нового. Подскажите пожалуйста, хочу подключить 3 светодиодные матрицы по 10 Вт., полный спектр от ноутбучного блока 40вт. Правильно ли я понял, потребуется три стабилизатора тока и три резистора, подключать все три матрицы(с установленными в каждой стабилизатором и резистором) параллельно? Какого сечения провод выбрать, и нет ли подводных камней с «полным спектром»?

Читайте раздел «Питание» на моём сайте.

Испытывал я ЛМ317Т в качестве регулятора напряжения (две штуки). Хочу сказать, что защиты от КЗ методом ограничения тока у нее НЕ ОБНАРУЖЕНО. Валит 1,6 А, 1,8 А, если плавно повышать проводимость микросхемы. Может, мне попались две подделки?

Наверное подделка, у меня отключается она при замыкании.

Добрый день!
Я правильно понял: для безотказной работы светодиода, в сети автомобиля с напряжением 14,5 в ,достаточно стабилизатора тока?Или необходимо ещё стабилизировать напряжение?
Вами указан готовый китайский стабилизатор тока на плате с LM317,конденсатором и 2а клемника,но он вроде как является стабилизатором напряжения(судя по описанию продавцом) ссылка на товар:
Что посоветуете использовать для подключения китайской светодиодной ленты в автомобиле?

Читайте также:  Расчет частоты LC контура – онлайн

LM317 Voltage Calculator

The LM317 (LM317T), and high current LM338 (LM338T) are voltage regulators which can take an input voltage of 3-40 Volts DC, and output a fixed output voltage from 1.2 to 37 Volts DC.

Labelled pinout for LM317T voltage regulator

The output voltage from the LM317 and LM338 is set using two resistors (R1 and R2) with their values chosen according to the following equation:

VOUT = 1.25 * ( 1 + R2/R1 )

Output Voltage Tables for Stock R1 and R2 Values

Where a very accurate voltage is not required, it is much easier to use standard (stock) resistors to put together an LM317 or LM338 voltage regulator. Below are tables of output voltages for different combinations of the most commonly found resistors.

R1 vs R2 Grid

R2R1 150 180 220 240 270 330 370 390 470
68 1.82 1.72 1.64 1.60 1.56 1.51 1.48 1.47 1.43
82 1.93 1.82 1.72 1.68 1.63 1.56 1.53 1.51 1.47
100 2.08 1.94 1.82 1.77 1.71 1.63 1.59 1.57 1.52
120 2.25 2.08 1.93 1.88 1.81 1.70 1.66 1.63 1.57
150 2.50 2.29 2.10 2.03 1.94 1.82 1.76 1.73 1.65
180 2.75 2.50 2.27 2.19 2.08 1.93 1.86 1.83 1.73
220 3.08 2.78 2.50 2.40 2.27 2.08 1.99 1.96 1.84
240 3.25 2.92 2.61 2.50 2.36 2.16 2.06 2.02 1.89
270 3.50 3.13 2.78 2.66 2.50 2.27 2.16 2.12 1.97
330 4.00 3.54 3.13 2.97 2.78 2.50 2.36 2.31 2.13
370 4.33 3.82 3.35 3.18 2.96 2.65 2.50 2.44 2.23
390 4.50 3.96 3.47 3.28 3.06 2.73 2.57 2.50 2.29
470 5.17 4.51 3.92 3.70 3.43 3.03 2.84 2.76 2.50
560 5.92 5.14 4.43 4.17 3.84 3.37 3.14 3.04 2.74
680 6.92 5.97 5.11 4.79 4.40 3.83 3.55 3.43 3.06
820 8.08 6.94 5.91 5.52 5.05 4.36 4.02 3.88 3.43
1000 9.58 8.19 6.93 6.46 5.88 5.04 4.63 4.46 3.91
1200 11.25 9.58 8.07 7.50 6.81 5.80 5.30 5.10 4.44
1500 13.75 11.67 9.77 9.06 8.19 6.93 6.32 6.06 5.24
1800 16.25 13.75 11.48 10.63 9.58 8.07 7.33 7.02 6.04
2200 19.58 16.53 13.75 12.71 11.44 9.58 8.68 8.30 7.10
2700 23.75 20.00 16.59 15.31 13.75 11.48 10.37 9.90 8.43
3300 28.75 24.17 20.00 18.44 16.53 13.75 12.40 11.83 10.03

Sorted List of Output Voltages with R1 and R2

1.43V R1 = 470, R2 = 68
1.47V R1 = 470, R2 = 82
1.48V R1 = 370, R2 = 68
1.51V R1 = 330, R2 = 68
1.51V R1 = 390, R2 = 82
1.52V R1 = 470, R2 = 100
1.53V R1 = 370, R2 = 82
1.56V R1 = 330, R2 = 82
1.57V R1 = 270, R2 = 68
1.57V R1 = 470, R2 = 120
1.57V R1 = 390, R2 = 100
1.59V R1 = 370, R2 = 100
1.60V R1 = 240, R2 = 68
1.63V R1 = 330, R2 = 100
1.63V R1 = 270, R2 = 82
1.64V R1 = 390, R2 = 120
1.64V R1 = 220, R2 = 68
1.65V R1 = 470, R2 = 150
1.66V R1 = 370, R2 = 120
1.68V R1 = 240, R2 = 82
1.71V R1 = 330, R2 = 120
1.71V R1 = 270, R2 = 100
1.72V R1 = 220, R2 = 82
1.72V R1 = 180, R2 = 68
1.73V R1 = 470, R2 = 180
1.73V R1 = 390, R2 = 150
1.76V R1 = 370, R2 = 150
1.77V R1 = 240, R2 = 100
1.81V R1 = 270, R2 = 120
1.82V R1 = 150, R2 = 68
1.82V R1 = 330, R2 = 150
1.82V R1 = 180, R2 = 82
1.83V R1 = 390, R2 = 180
1.84V R1 = 470, R2 = 220
1.86V R1 = 370, R2 = 180
1.88V R1 = 240, R2 = 120
1.89V R1 = 470, R2 = 240
1.93V R1 = 330, R2 = 180
1.93V R1 = 150, R2 = 82
1.94V R1 = 270, R2 = 150
1.96V R1 = 390, R2 = 220
1.97V R1 = 470, R2 = 270
1.99V R1 = 370, R2 = 220
2.02V R1 = 390, R2 = 240
2.03V R1 = 240, R2 = 150
2.06V R1 = 370, R2 = 240
2.08V R1 = 330, R2 = 220
2.10V R1 = 220, R2 = 150
2.12V R1 = 390, R2 = 270
2.13V R1 = 470, R2 = 330
2.16V R1 = 330, R2 = 240
2.16V R1 = 370, R2 = 270
2.19V R1 = 240, R2 = 180
2.23V R1 = 470, R2 = 370
2.25V R1 = 150, R2 = 120
2.27V R1 = 270, R2 = 220
2.27V R1 = 330, R2 = 270
2.29V R1 = 470, R2 = 390
2.29V R1 = 180, R2 = 150
2.31V R1 = 390, R2 = 330
2.36V R1 = 270, R2 = 240
2.37V R1 = 370, R2 = 330
2.40V R1 = 240, R2 = 220
2.44V R1 = 390, R2 = 370
2.50V R1 = 470, R2 = 470
2.57V R1 = 370, R2 = 390
2.61V R1 = 220, R2 = 240
2.65V R1 = 330, R2 = 370
2.66V R1 = 240, R2 = 270
2.73V R1 = 330, R2 = 390
2.74V R1 = 470, R2 = 560
2.75V R1 = 150, R2 = 180
2.76V R1 = 390, R2 = 470
2.78V R1 = 270, R2 = 330
2.78V R1 = 220, R2 = 270
2.84V R1 = 370, R2 = 470
2.92V R1 = 180, R2 = 240
2.96V R1 = 270, R2 = 370
2.97V R1 = 240, R2 = 330
3.03V R1 = 330, R2 = 470
3.05V R1 = 390, R2 = 560
3.06V R1 = 270, R2 = 390
3.06V R1 = 470, R2 = 680
3.08V R1 = 150, R2 = 220
3.13V R1 = 220, R2 = 330
3.14V R1 = 370, R2 = 560
3.18V R1 = 240, R2 = 370
3.25V R1 = 150, R2 = 240
3.28V R1 = 240, R2 = 390
3.35V R1 = 220, R2 = 370
3.37V R1 = 330, R2 = 560
3.43V R1 = 270, R2 = 470
3.43V R1 = 390, R2 = 680
3.43V R1 = 470, R2 = 820
3.47V R1 = 220, R2 = 390
3.50V R1 = 150, R2 = 270
3.54V R1 = 180, R2 = 330
3.55V R1 = 370, R2 = 680
3.70V R1 = 240, R2 = 470
3.82V R1 = 180, R2 = 370
3.83V R1 = 330, R2 = 680
3.84V R1 = 270, R2 = 560
3.88V R1 = 390, R2 = 820
3.91V R1 = 470, R2 = 1000
3.92V R1 = 220, R2 = 470
3.96V R1 = 180, R2 = 390
4.00V R1 = 150, R2 = 330
4.02V R1 = 370, R2 = 820
4.17V R1 = 240, R2 = 560
4.33V R1 = 150, R2 = 370
4.36V R1 = 330, R2 = 820
4.40V R1 = 270, R2 = 680
4.43V R1 = 220, R2 = 560
4.44V R1 = 470, R2 = 1200
4.46V R1 = 390, R2 = 1000
4.50V R1 = 150, R2 = 390
4.51V R1 = 180, R2 = 470
4.63V R1 = 370, R2 = 1000
4.79V R1 = 240, R2 = 680
5.04V R1 = 330, R2 = 1000
5.05V R1 = 270, R2 = 820
5.10V R1 = 390, R2 = 1200
5.11V R1 = 220, R2 = 680
5.14V R1 = 180, R2 = 560
5.17V R1 = 150, R2 = 470
5.24V R1 = 470, R2 = 1500
5.30V R1 = 370, R2 = 1200
5.52V R1 = 240, R2 = 820
5.80V R1 = 330, R2 = 1200
5.88V R1 = 270, R2 = 1000
5.91V R1 = 220, R2 = 820
5.92V R1 = 150, R2 = 560
5.97V R1 = 180, R2 = 680
6.04V R1 = 470, R2 = 1800
6.06V R1 = 390, R2 = 1500
6.32V R1 = 370, R2 = 1500
6.46V R1 = 240, R2 = 1000
6.81V R1 = 270, R2 = 1200
6.92V R1 = 150, R2 = 680
6.93V R1 = 330, R2 = 1500
6.94V R1 = 180, R2 = 820
7.02V R1 = 390, R2 = 1800
7.10V R1 = 470, R2 = 2200
7.33V R1 = 370, R2 = 1800
7.50V R1 = 240, R2 = 1200
8.07V R1 = 330, R2 = 1800
8.08V R1 = 150, R2 = 820
8.19V R1 = 270, R2 = 1500
8.30V R1 = 390, R2 = 2200
8.43V R1 = 470, R2 = 2700
8.68V R1 = 370, R2 = 2200
9.06V R1 = 240, R2 = 1500
9.58V R1 = 330, R2 = 2200
9.77V R1 = 220, R2 = 1500
9.90V R1 = 390, R2 = 2700
10.03V R1 = 470, R2 = 3300
10.37V R1 = 370, R2 = 2700
10.63V R1 = 240, R2 = 1800
11.25V R1 = 150, R2 = 1200
11.44V R1 = 270, R2 = 2200
11.48V R1 = 330, R2 = 2700
11.67V R1 = 180, R2 = 1500
11.83V R1 = 390, R2 = 3300
12.40V R1 = 370, R2 = 3300
12.71V R1 = 240, R2 = 2200
13.75V R1 = 330, R2 = 3300
15.31V R1 = 240, R2 = 2700
16.25V R1 = 150, R2 = 1800
16.53V R1 = 270, R2 = 3300
16.59V R1 = 220, R2 = 2700
18.44V R1 = 240, R2 = 3300
19.58V R1 = 150, R2 = 2200
20.00V R1 = 220, R2 = 3300
23.75V R1 = 150, R2 = 2700
24.17V R1 = 180, R2 = 3300
28.75V R1 = 150, R2 = 3300
Читайте также:  Расчет зарядного устройства с гасящим конденсатором

LM317/LM338 Current Calculator

If you would like to use the LM317T or LM338T to output a fixed current rather than voltage, click here to visit our LM317 Current Calculator.

NEW For voltage regulators required to output more than 1.5A, click here to view LM317T High Current Voltage Regulator for more information and a circuit plan.

Интегральный стабилизатор напряжения LM317. Описание и применение

Довольно часто возникает необходимость в простом стабилизаторе напряжения. В данной статье приводится описание и примеры применения недорогого (цены на LM317) интегрального стабилизатора напряжения LM317.

Список решаемых задач данного стабилизатора довольно обширен — это и питание различных электронных схем, радиотехнических устройств, вентиляторов, двигателей и прочих устройств от электросети или других источников напряжения, например аккумулятора автомобиля. Наиболее распространены схемы блоков питания на LM317 с регулировкой напряжения.

На практике, с участием LM317 можно построить стабилизатор напряжения на произвольное выходное напряжение, находящееся в диапазоне 3…38 вольт.

Технические характеристики:

  • Напряжение на выходе стабилизатора: 1,2… 37 вольт.
  • Ток выдерживающей нагрузки до 1,5 ампер.
  • Точность стабилизации 0,1%.
  • Имеется внутренняя защита от случайного короткого замыкания.
  • Отличная защита интегрального стабилизатора от возможного перегрева.

Мощность рассеяния и входное напряжение стабилизатора LM317

Напряжение на входе стабилизатора не должно превышать 40 вольт, а так же есть еще одно условие – минимальное входное напряжение должно превышать желаемое выходное на 2 вольта.

Микросхема LM317 в корпусе ТО-220 способна стабильно работать при максимальном токе нагрузки до 1,5 ампер. Если не применять качественный теплоотвод, то это значение будет ниже. Мощность, выделяемая микросхемой в процессе ее работы, можно определить приблизительно путем умножения силы тока на выходе и разности входного и выходного потенциала.

Максимально допустимое рассеивание мощности без теплоотвода равно приблизительно 1,5 Вт при температуре окружающего воздуха не более 30 градусов Цельсия. При обеспечении хорошего отвода тепла от корпуса LM317 (не более 60 гр.) рассеиваемая мощность может составлять 20 ватт.

При размещении микросхемы на радиаторе необходимо изолировать корпус микросхемы от радиатора, например слюдяной прокладкой. Так же для эффективного отвода тепла желательно использовать теплопроводную пасту.

Читайте также:  Калькулятор расчёта частоты TL494

Подбор сопротивления для стабилизатора LM317

Для точной работы микросхемы суммарная величина сопротивлений R1…R3 должна создавать ток приблизительно 8 мА при требуемом выходном напряжении (Vo), то есть:

R1 + R2 + R3 = Vo / 0,008

Данное значение следует воспринимать как идеальное. В процессе подбора сопротивлений допускается небольшое отклонение (8…10 мА).

Величина сопротивления переменного резистора R2 напрямую связана с диапазоном напряжения на выходе. Обычно его сопротивление должно быть примерно 10…15 % от суммарного сопротивления оставшихся резисторов (R1 и R2) либо же можно подобрать его сопротивление экспериментально.

Расположение резисторов на плате может быть произвольным, но желательно для лучше стабильности располагать подальше от радиатора микросхемы LM317.

Стабилизация и защита схемы

Емкость С2 и диод D1 не обязательны. Диод обеспечивает защиту стабилизатора LM317 от возможного обратного напряжения, появляющегося в конструкциях различных электронных устройств.

Емкость С2 не только слегка уменьшает отклик микросхемы LM317 на изменения напряжения, но и снижает влияние электрических наводок, при размещении платы стабилизатора вблизи мест имеющих мощное электромагнитное излучение.

Как было уже сказано выше, ограничение максимально возможного тока нагрузки для LM317 составляет 1,5 ампера. Имеются разновидности стабилизаторов схожие по работе со стабилизатором LM317, но рассчитаны на более больший ток нагрузки. К примеру, стабилизатор LM350 выдерживает ток до 3 ампер, а LM338 до 5 ампер.

Для облегчения расчета параметров стабилизатора существует специальный калькулятор:

Скачать datasheet LM317 (216,6 KiB, скачано: 2 347)

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: