Лабораторный блок питания с регулировкой напряжения и тока

Лабораторный блок питания своими руками ⁠ ⁠

Сегодня вы узнаете как собрать надёжный лабораторный блок питания с регулировкой тока и напряжения. Использоваться будут готовые компоненты и модули, поэтому, если следовать схеме и инструкции, сложностей в сборке возникнуть не должно. Основным компонентом в схеме, будет модуль DC-DC преобразователя, который можно приобрести на Алиэкспресс, все ссылки будут в конце статьи.

Основные характеристики DC-DC преобразователя:

– Входное напряжение 5 — 40 Вольт;

– Выходное напряжение 1.2 — 35 Вольт;

– Выходной ток (мах) 9 Ампер, желательно установить кулер.

Схема блока питания:

Как уже говорилось выше, схема простая, сетевое напряжение поступает на трансформатор, имеется сетевой выключатель и предохранитель, напряжение понижается трансформатором, верхняя честь схемы силовая. Переменное напряжение поступает на диодный мост и сглаживающий конденсатор. Далее поступает на DC-DC преобразователь, с преобразователя напряжение поступает на выходные клеммы. Минус схемы разрывается приборчиком, для удобства, регулировочные резисторы вынесены с платы.

Нижняя предназначена для питания вольтамперметра. Трансформатор имеет отдельную обмотку, как и с силовой обмоткой, переменное напряжение поступает на диодный мост и фильтрующий конденсатор. Далее установлен линейный стабилизатор на 5 Вольт.

Лабораторный блок питания своими руками Блок питания, Лабораторный Блок питания, Схема блока питания, Сделай сама, Своими руками, Длиннопост

Со схемой разобрались, теперь переходим к компонентам.

Корпусом лабораторного блока питания будет служить старый корпус от регулятора паяльника. Регулятор паяльника еще времен СССР, очень добротный.

Лабораторный блок питания своими руками Блок питания, Лабораторный Блок питания, Схема блока питания, Сделай сама, Своими руками, Длиннопост

Передняя панель будет из композитного пластика. Состоит пластик из двух пластин алюминия и пластика между ним, с одной стороны, он белый, с второй черный. Черная сторона будет лицевой.

Лабораторный блок питания своими руками Блок питания, Лабораторный Блок питания, Схема блока питания, Сделай сама, Своими руками, Длиннопост

Понижающий трансформатор от старого оборудования, уже не помню какого. Его пришлось слегка доработать, сделал отвод на 22 Вольта, полная обмотка на 27 Вольт. Если оставить, то после диодного моста напряжение более 30 Вольт. Это много для стабилизатора 7805, установленного на DC-DC преобразователе. Он питает операционный усилитель схемы. Хоть и заявлено 40 Вольт, при учете максимального для 7805 в 30 Вольт.

Лабораторный блок питания своими руками Блок питания, Лабораторный Блок питания, Схема блока питания, Сделай сама, Своими руками, Длиннопост

Понижающий преобразователь постоянного тока.

Лабораторный блок питания своими руками Блок питания, Лабораторный Блок питания, Схема блока питания, Сделай сама, Своими руками, Длиннопост

Лабораторный блок питания своими руками Блок питания, Лабораторный Блок питания, Схема блока питания, Сделай сама, Своими руками, Длиннопост

Так же понадобятся клеммы, с данном случаи используются стары советские.

Лабораторный блок питания своими руками Блок питания, Лабораторный Блок питания, Схема блока питания, Сделай сама, Своими руками, Длиннопост

Конденсатор на 4700 мкф*63 Вольта. Из расчета 1000 мкф на 1 Ампер. На модуле установлены еще 2*470 мкф.

Лабораторный блок питания своими руками Блок питания, Лабораторный Блок питания, Схема блока питания, Сделай сама, Своими руками, Длиннопост

Диодный мост можно взять и единый, но у меня остался от старого проекта. Собран на 4-х диодах Д242.

Лабораторный блок питания своими руками Блок питания, Лабораторный Блок питания, Схема блока питания, Сделай сама, Своими руками, Длиннопост

Изготовление блока питания

На дне корпуса размечаем, сверлим отверстия под: трансформатор, диодный мост, модуль. Все спаиваем соответственно схемы. С модуля выпаял два подстроечных резистора. Вместо них припаял провода. На токовый 3 провода, на напряжение два.

Лабораторный блок питания своими руками Блок питания, Лабораторный Блок питания, Схема блока питания, Сделай сама, Своими руками, Длиннопост

Питать Вольтамперметр буду через линейный стабилизатор на 5 Вольт. Диодный мост КЦ402 и конденсатор небольшой емкости.

Лабораторный блок питания своими руками Блок питания, Лабораторный Блок питания, Схема блока питания, Сделай сама, Своими руками, Длиннопост

На задней панели делаю разметку под сетевой разъем и предохранитель. Все аккуратно выпиливаю и устанавливаю.

Лабораторный блок питания своими руками Блок питания, Лабораторный Блок питания, Схема блока питания, Сделай сама, Своими руками, Длиннопост

На передней панели размечаю и вырезаю все отверстия. Тут будут: выходные клеммы, сетевой выключатель, резисторы тока и напряжения, Вольтамперметр.

Лабораторный блок питания своими руками Блок питания, Лабораторный Блок питания, Схема блока питания, Сделай сама, Своими руками, Длиннопост

Распаял все элементы устанавливаемые изнутри. Сетевой выключатель коммутирует оба сетевых провода. Первоначально хотел применить другой.

Лабораторный блок питания своими руками Блок питания, Лабораторный Блок питания, Схема блока питания, Сделай сама, Своими руками, Длиннопост

Устанавливаем все элементы передней панели. Плюсовая клемма отмечена красной краской. Ручки резисторов разного цвета. Красная по цвету отображения Вольт. Желтая по току. Пока что не подписывал где ток и напряжение. Позже буду менять резисторы на многооборотные, ручки возможно тоже поменяю.

Лабораторный блок питания своими руками Блок питания, Лабораторный Блок питания, Схема блока питания, Сделай сама, Своими руками, Длиннопост

Верхнюю крышку покрасил. Между передней панелью и крышкой была слишком большая щель, ее закрыл небольшим уголком. При проверке блок выдал 9 Ампер на коротком, при 28 Вольтах, что составило чуть больше 250 Ватт.

Лабораторный блок питания своими руками Блок питания, Лабораторный Блок питания, Схема блока питания, Сделай сама, Своими руками, Длиннопост

Такой вот Лабораторный Блок Питания получился. Им можно как питать разного рода устройства, также заряжать аккумуляторы. Первоначально хотел применить импульсный источник на 24 Вольта, но попался трансформатор нужных габаритов. Так же, стараюсь собирать устройство из того что есть. Всем спасибо за внимание!

Читайте также:  Отличный, импульсный паяльник своими руками.

Это не надёжный блок питания, если выставить напряжение и нагрузка будет потреблять ток неравномерно, то напряжение тоже будет плясать

А вот это – отстой. Транс слабенький и даже половину мощности DC-DC данных не выдаст. Да и вообще транс не одобряю, лучше его продать туда где он нужен реально и купить китайский AC-DC на нормальную мощность.

Собственно основа и начало мыслей было тут

Блок питания⁠ ⁠

Доброго времени суток, уважаемые пикабушники! Начну с небольшой предыстории. Недавно собрал себе стереоусилитель для двух колонок от музыкального центра. Звук радовал но всё же не хватало низкочастотной составляющей. Так как конструировать сабвуфер для меня не самое простое дело, то нужно было что-то думать. Мне повезло и в гараже нашёлся старенький автомобильный активный (со встроенным усилителем) саб, со всей проводкой.

Но подключить его дома, в розетку, само собой не представлялось возможным, т.к. питается он от 12 В. Тут и решено было изготовить блок питания, который бы решил эту проблему.

Началось всё с печатной платы. Я далеко не профессионал в проектировании, поэтому решил взять готовую плату и переразвести под свои нужды. Далее фото этапов изготовления печатной платы методом лут (Если коротко, печатаем дорожки на лазерном принтере, желательно использовать глянцевую бумагу. Потом переносим с помощью нагретого утюга изображение на кусок фольгированного стеклотекстолита. Подробности узнайте у гугла).

Блок питания Пятница, Электроника, Своими руками, Блок питания, Сабвуфер, Длиннопост

Блок питания Пятница, Электроника, Своими руками, Блок питания, Сабвуфер, Длиннопост

Блок питания Пятница, Электроника, Своими руками, Блок питания, Сабвуфер, Длиннопост

Залудил плату, просверлил отверстия.

Блок питания Пятница, Электроника, Своими руками, Блок питания, Сабвуфер, Длиннопост

Немаловажным является и корпус устройства. Плату делал в расчёте на то, что она встанет на “родные” крепления компьютерного блока питания. Смонтировал габаритные детали и примерил. Всё вроде достаточно не плохо, нечего не выпирает).

Блок питания Пятница, Электроника, Своими руками, Блок питания, Сабвуфер, Длиннопост

Далее я приступил к монтажу деталей на плату.

Блок питания Пятница, Электроника, Своими руками, Блок питания, Сабвуфер, Длиннопост

Блок питания Пятница, Электроника, Своими руками, Блок питания, Сабвуфер, Длиннопост

Самым непростым, на мой взгляд, является намотка трансформатора, однако, если долго мучится, что-нибудь получится:) Если кому интересно, первичная обмотка 35 витков, вторичная 3+3 витка. Рассчитывался на частоту 40 кГц в специализированных программах. Сечения проводов не запомнил, но они довольно толстые.

После завершения монтажа необходимо было проверить работоспособность платы.

Блок питания Пятница, Электроника, Своими руками, Блок питания, Сабвуфер, Длиннопост

Фуф, всё работает и не взрывается:) На выходе получилось 15 вольт.

Далее приступил к подготовке корпуса. Клеммами выступили винты М4. Закрепил их через пластину из стеклотекстолита, дабы они не замкнули через металлический корпус. “Плюсом” блока питания будет верхняя клемма. Так же решено было покрасить ящик.

Блок питания Пятница, Электроника, Своими руками, Блок питания, Сабвуфер, Длиннопост

Блок питания Пятница, Электроника, Своими руками, Блок питания, Сабвуфер, Длиннопост

Блок питания Пятница, Электроника, Своими руками, Блок питания, Сабвуфер, Длиннопост

Да, маляр из меня так себе. Наверно нужно было использовать матовую краску, может вышло бы получше, но как говорится.

Блок питания Пятница, Электроника, Своими руками, Блок питания, Сабвуфер, Длиннопост

Мощность блока питания составляет примерно 450 Вт (в теории). Для моих нужд достаточно с головой. При работе нагрузить удалось от силы на 100-150 Вт а то и меньше.

Таким образом крепятся провода питания идущие от сабвуфера. С обратной стороны, аналогичным образом крепятся провода с платы.

Самодельный импульсный блок питания с регулировкой напряжения и тока.

Такой тип источников питания ещё называют лабораторными, и не зря!Он подойдет не только для питания различных устройств, но и как универсальное зарядное устройство для абсолютно любых аккумуляторов.

Как мне кажется блок питания мега простой и отлично подойдет для начинающего радиолюбителя.Блок питания может быть построен на различные диапазоны напряжения и тока все зависит от конкретных задач.Сегодня мы рассмотрим блок питания на самый популярный диапазон 0-30 вольт/0-10 амер. Выбор такого диапазона также обусловлен применением китайского вольтамперметра с диапазоном по току до 10а.

Читайте также:  Делаем светодиодную лампу своими руками

Условно блок питания можно разделить на 3 части:

1 Внутренний источник питания.

Представляет из себя любой компактный источник напряжение 12 вольт и током не менее 300 мА.Предназначен для питания шим контроллера, вентилятора охлаждения и вольтамперметра.Можно использовать абсолютно любой адаптер на 12 вольт. Рассказывать как собрать такой в этой статье не буду, будем использовать готовый AC-DC преобразователь с китая вот такого типа:

2 Модуль управления.

Представляет из себя микросхему TL494 c небольшим драйвером на 4-х транзисторах:

Благодаря использованию встроенных операционных усилителей обвязка TL494 получается очень простая, такое включение широко распространено у радиолюбителей.Резистором R4 задаём желаемое максимальное напряжение, R2- ток.R11 и R12 для удобства могут быть многооборотные, но я использую обычные.
При использовании ЛУТ плату управления я как правило собираю на отдельной платке:

3 Силовая часть.
Основную часть компонентов можно использовать из старого компьютерного блока питания, главное чтобы он был соответствующей топологии.

Входной фильтр, выпрямитель, конденсаторы из компьютерного блока питания.
Начинающего радиолюбителя может испугать трансформатор управления силовыми ключами, его придётся изготовить самостоятельно.Но не спешите с выводами, уверяю вас сделать его очень просто.
Понадобится ферритовое колечко R16*10*4.5 и три отрезка по 1 метру провода МГТФ 0.07кв.мм. Просто наматываем на кольце 30 витков в 3 провода.

Дроссель L1 мотается на ферритовом кольце из того же компьютерного бп, предварительно сматываем с него все обмотки и наматываем медный провод длинной 1.5-2м сечением 2мм, это позволит уложится в указанные параметры(это для тех у кого нечем промерять индуктивность).
Также в большинстве нормальных компьютерных бп есть второй дроссель на ферритовом стержне, его в большинстве случаев можно оставить как есть в качестве L2.
Силовой трансформатор тоже можно использовать как есть, но тогда выходное напряжение будет около 20 вольт.Для 30 вольт вторичную обмотку придется перемотать.
Когда мне нужно снять большие токи я предпочитаю использовать ферритовые кольца.
Расчет для нашего блока питания 30 вольт 10 ампер.Трансформатор-донор из компьютерного бп оказался 39/20/12:

Все основные компоненты размещаются на пп стандартных размеров под корпус компьютерного блока питания:

Кстати после сборки платы управления и намотки трансформатора GDT их можно проверить даже если у вас нет осциллографа.

При отсутствии ошибок при монтаже и исправных компонентах схема практически не нуждается в настройке.
Для управления вентилятором я как правило использую схему управление по температуре на lm317

или термостаты KCD 9700.Иногда и то и другое сразу.

Лицевая панель нарисована в frontdesigner 3.0 и распечатана на самоклеящейся фотобумаге, затем заламинирована самоклеящаяся пленкой для учебников и книг(есть в любом офис маге).

Вот и корпус будущего бп уже практически готов:

Добавлю ещё версию модуля управления попроще и помощнее, но слегка по дороже

Лабораторный блок питания с регулировкой тока и напряжения

Лабораторный блок питания может пригодится практически каждому радиолюбителю для отладки и работы с электроникой. В данной статье мы рассмотрим сборку лабораторного блока питания, схема которого довольно известна в сети интернет. Схема является довольно популярной, была собрана множеством радиолюбителей по всему миру. В виду её популярности, в Китае так же наладили производство кит-набора, с помощью которого можно спаять схему, немного сэкономив на времени при изготовлении печатной платы, и поиске компонентов. Я решил заказать этот набор, и посмотреть что из этого получится. В блоке питания имеется регулировка как по току, так и напряжению. Данный пост будет содержать минимум теории, и больше фото для показа что в итоге получилось.

Читайте также:  Паяльный фен своими руками

Принципиальная схема блока питания:

Принципиальная схема блока питания

Схема найдена в интернете, некоторые компоненты на схеме выше заменены советскими аналогами, в целом схема идентична.

Сам набор с компонентами добрался в таком виде:

Перед началом сборки выяснилось что некоторые компоненты пришли ни тех номиналов. Что касается подобного рода посылок, то это довольно распространённая практика. Поэтому рекомендуется всегда проверять элементы перед сборкой. В моём случае шунтирующий резистор (R7) оказался 47 Ом, а должен быть 0.47 Ом. Кроме того операционники оказались с дефектом, и после сборки не регулировалось напряжение и ток. Всё исправилось заменой этих компонентов. Читал в интернете, у некоторых схема начинает работать сразу после сборки. У некоторых приходят с дефектами или неправильными номиналами элементов. Очевидно, мне попалось и то и другое, в общем с ситуацией разобрался, и плата собрана и работает.

На схеме так же имеется стабилизатор напряжения 7824, я решил заменить его на 7812, который будет выдавать 12 В для запитки куллера + индикатора напряжения и тока.

В качестве трансформатора временно решил использовать от старого бесперебойника. Плата вывозит нагрузку на 3А, однако легко дорабатывается некоторой заменой компонентов. После этого при необходимости можно повысить выдаваемый ток блоком питания. Протестировав схему, стало понятно, что радиатор на выходном транзисторе маловат в своих габаритах, и не справляется с рассеиванием тепла. После чего решил прикрутить транзистор на радиатор от старого 478-го процессора. Как положено, с использованием термопасты для лучшей проводимости, т.к. узел весьма показался мне уязвимым в вопросе перегрева.

Решил повесить нагрузку в пару ампер на блок питания, посмотреть как быстро будет греться радиатор на транзиcторе. Минуты две при такой нагрузке радиатор спокойно рассеивает температуру после чего уже требуется принудительное охлаждение. Решил немного доработать охлаждение радиатора, и вместо того, чтобы вентилятор жужал постоянно, сделал схему, которая будет включать его при пиковых нагрузках. В сети интернет есть схема, которая реализована за счёт необычной способности транзистора КТ315 менять свои свойства при смене температуры.

Схема регулятора оборотов вентилятора охлаждения:

Собрал эту схему довольно быстро, она так же популярна в сети интернет. Особенность этой схемы в том, что в качестве датчика выступает транзистор КТ315. Этот транзистор к счастью оказался под рукой. Что касается VT2 то я решил заменить его современным аналогом, т.к. в магазинах всё реже можно найти детали старой базы.

Самое время делать корпус для блока питания и собирать это всё дело в кучу. Т.к. под рукой оказался корпус от бесперебойника компьютера, решил попробовать затолкать в него все компоненты, а так же сделать более правильную “морду”, с регуляторами индикаторами и тумблером.

Переменные резисторы решил заказать другие, т.к. регулировка с многооборотистым резистором гораздо плавнее. В ходе испытаний выяснилось что индикатор напряжения имеет погрешность 0,01В, а вот что касается тока, то там наблюдается нелинейность в измерении. Исправляется пайкой одной перемычки на плате (в сети много об этом есть постов). Крепёж под “бананы”, а так же тумблер включения питания.

Вот такая тушка под корпус лабораторника, переднюю и заднюю панель я открутил, так как она не пригодится, и панели у прибора будут другие.

В качестве материала для панели решил взять гетинакс, толщиной 5 мм. Причина такого выбора в том что его легко обрабатывать, диэлектрик, да и оказался под рукой.

Читайте также:  Делаем простую светомузыку своими руками. Схема.

Отверстия сверлились свёрлами и отрезными дисками для бор машины. Процесс изготовления корпуса – творческий, а поэтому в моём случае затянуться на больше чем ожидалось).

Элементы на панели вырезанные из листа гетинакса не стыковались с отверстиями которые были на железном корпусе. Таким образом чтобы разместить элементы потребовалось так же немного подрезать сам металлический корпус.

Урезая корпус под нужды элементов управления, это его значительно ослабляет в плане жесткости. Я же стремился сделать его более надёжным и качественным. В итоге простая переделка перешла в фазу “глубокой” переделки, в ходе чего была срезана задняя панель полностью, и добавлены рёбра жесткости.

Для примерки первый крепёж был сделан что называется на “шару” для того чтобы немного прикинуть размещение элементов. В ходе чего было выяснено, что так же потребуется сделать дополнительную планку по центру, чтобы прикрутить к ней два радиатора, и пару схем.

Сделал всё как задумал, хоть и можно было проще затолкать как получиться, но хотелось сделать как виделось правильным. Оставил запас места под трансформатор большего размера. Сам трансформатор разместил по центру, для более правильной развесовки прибора, а так же рассеивания тепла. Радиатор разместил ближе к задней стенке где находится вентилятор кулера. Сама плата блока питания так же находится ближе к кулеру. Плата управления ближе к передней панели, и в таком положении, чтобы место в центральной части где находится трансформатор оставалась в запасе.

Немного творческого беспорядка, на пару дней, в итоге подогнал все элементы по местам, и спаял узлы в последствии. Радиатор изолировал от корпуса, в итоге были сделаны специальные посадочные площадки из гетинакса которые одной стороной крепились к корпусу другой к радиатору. Получился некий пазл, которой держал всё это дело прочно на своих местах.

После первой сборки и спайки самоё время проверить работоспособность прибора. После сборки прибор включился но регулировалось напряжение и ток. В итоге выяснилось, что многооборотистые резисторы были припаяны немного неправильно, и это дело быстро исправилось. В целом, всё практически готово. Датчик регулятора скорости вращения вентилятора (транзистор КТ315) так же был прикручен около выходного транзистора блока питания, который размещался на радиаторе. Таким образом он быстрее реагирует на смену температуры выходного транзистора не дожидаясь нагрева всего радиатора.

Регуляторы на переменные резисторы мне показались довольно габаритными для этой панели, поэтому ставить их пока не стал, и заказал другие специальные для данного типа резисторов.

Вот такой получился танк. На задней панели сделаны отверстия под для вентилятора, предохранитель, а так же гнездо питания на 220 В. Центральный контакт гнезда как и положено заземлил на корпус блока питания. Хотя в наших розетках и нету третей точки – заземления, но пускай будет хотя бы в приборе, на будущее.

Проводка в блоке так же была связана, чтобы не было механического воздействия на места припоя при эксплуатации прибора.

В дальнейшем прибор так же планируется дорабатываться и в плане мощности, и возможно немного по внешнему виду. А пока результат он выглядит таким вот образом.

Сама плата с базовыми элементами способна выдавать от 0 до 30 Вольт, с током от 0 до 3 Ампер. Осциллограммы к сожалению показать не могу, т.к. нет осциллографа под рукой. Конечно это не много, ну и не мало тоже. По этой причине в дальнейшем планируется доработка в сторону увеличения мощности, путем замены элементной базы, от трансформатора до транзисторов. Разумеется насколько это позволят сами дорожки платы.

Читайте также:  Магнитола-планшет в машину: выбор устройства и способы установки

Лабораторные блоки питания – какие они бывают (подборка-путеводитель)

Лабораторные блоки питания (ЛБП) отличаются от «обычных» тем, что позволяют менять и контролировать свои параметры (напряжение и ток), подстраивая их под требования питаемого устройства.

К лабораторным блокам питания также часто применяются повышенные требования по «чистоте» выходного напряжения, но единых требований в этом отношении нет — всё зависит от области применения.

Лабораторные блоки питания существуют с незапамятных времён; и кое-где даже до сих пор используются древнесоветские изделия (а собственно, почему бы и нет, если они находятся в работоспособном состоянии?!).

Лабораторные блоки питания могут быть импульсными и линейными, а также иметь аналоговую или цифровую регулировку параметров.

Кроме лабораторных блоков питания, существуют и более простые регулируемые блоки питания. Они позволяют только установить напряжение на выходе, а контроля и регулировки выходного тока не имеют. Они не будут рассматриваться в этой статье, хотя в каких-то случаях и могут заменить ЛБП.

Подборку начнём с простого, но мощного импульсного лабораторного блока питания LW-K3010D (обзор).

По обычаям маркировки современных ЛБП, их максимальные выходные напряжение и ток указываются прямо в наименовании (как правило). Например, для данного блока это — 30 Вольт и 10 Ампер.

Но данный ЛБП всё-таки будет исключением: на самом деле он может отдать более высокое напряжение — до 32 Вольт («бонус» в 2 Вольта от производителя). По току он просто соответствует заявленным характеристикам без запаса.

Этот блок имеет чисто аналоговую настройку выходных параметров.

При этом напряжение устанавливается довольно точно (до 0.1 В) с помощью многооборотного переменника; а величина выходного тока стабилизации — наоборот, устанавливается довольно грубо с помощью «обычного» переменника.

К положительным качествам этого блока можно отнести не только высокую отдаваемую мощность, но и вертикальную конструкцию, занимающую мало места на столе.

Цена на момент составления подборки — от $60 при доставке в Россию.

Приобрести его можно на Алиэкспресс: Вариант 1 и Вариант 2.

Далее рассмотрим семейство импульсных лабораторных блоков питания от того же производителя (Longwei), но более продвинутых и дорогих: от PS-302DF (30 В, 2 А) и до PS-1003DF (100 В, 3 А); всего — целых 10 (!) вариантов комбинаций напряжения и тока:

Это семейство блоков питания имеет всё ещё чисто аналоговое управление, но уже улучшенное: имеются регуляторы грубой и точной настройки как по напряжению, так и по току.

Кроме того, улучшена индикация: добавлены показания мощности; и все индикаторы сделаны 4-значными.

И, до кучи, блоки имеют выход USB 5V 2A для зарядки мобильников. :)

Цена — от $80 с учётом доставки за стандартный блок PS-3010DF (30 В, 10 А) ссылка; и до $130 за самый высоковольтный PS-1003DF (100 В, 3 А) ссылка.

Существует также серия похожих по параметрам импульсных блоков питания компании Wanptek, но с другим дизайном. Эта серия включает восемь блоков с разными комбинациями токов и напряжений: от NPS306W (30 В, 6 А) и до NPS1203W (120 В, 3 А).

Один из серии этих блоков может отдать напряжение до 120 В; в то время, как у конкурентов максимум обычно составляет 100 В.

Эти блоки питания имеют узкую конструкцию, занимающую мало места на рабочем столе.

Индикация может быть трёх- или четырёхзначной; имеется индикатор мощности, отдаваемой в нагрузку.

Цена блоков — от $56 и до $89.

Приобрести его можно на Алиэкспресс можно по ссылкам: Вариант 1 или Вариант 2.

Читайте также:  Измеритель ESR с трансформаторной развязкой

Для тех, кто любит «погорячее», можно рекомендовать импульсный лабораторный блок питания Gophert CPS-3232 (32 В, 32 А). Итого, мощность — свыше киловатта!

Этот лабораторный блок питания имеет плоскую конструкцию, в связи с чем удобнее его будет применять на рабочем месте, оборудованном дополнительными уровнями рабочего пространства над столом.

Но, поскольку блок — импульсный, то вес его не слишком большой — около 2.2 кг; несмотря на очень высокую мощность.

Блок имеет цифровое управление, но несколько «заковыристое»: с одним регулятором-энкодером и кнопочками переключения регулируемого параметра (ток или напряжение). Возможности запомнить несколько настроек нет.

Кроме того, по отзывам, его вентилятор может иметь повышенную шумность.

Цена — конечно же, не маленькая: около $250 (с учетом доставки).

Посмотреть актуальные цены и/или купить блоки питания этого мощного семейства на Алиэкспресс можно здесь. По этой же ссылке можно найти другие блоки с параметрами от 16 В / 60 А до 36 В / 30 А.

Следующий лабораторный блок питания — KORAD KA3005D (30 В, 5 А).

Он не отличается высокой мощностью, зато отличается продвинутым цифровым управлением: он может запоминать несколько настроек. Кроме того, напряжение и ток могут устанавливаться с высокой точностью; что обеспечивается 4-значными индикаторами.

Блок питания — не из самых дешевых, цена составляет около $89 с учётом доставки.

Посмотреть актуальную цену и/или купить на Алиэкспресс можно здесь.

И, наконец, самый необычный из рассматриваемых сегодня лабораторных блоков питания — 3-канальный линейный лабораторный блок питания KORAD KA3305P.

Как и положено линейным блокам питания, он содержит много металла в виде трансформаторов и радиаторов, и потому — очень тяжелый. Его вес — 9.4 кг.

Один из его каналов — фиксированный и отдаёт напряжение 5 В при токе до 3 Ампер. Остальные два канала — регулируемые в пределах 0-30 В с током 0-5 А. Регулируемые каналы могут работать как «сами по себе», так и включены в параллельный или последовательный режим (инструкция — на сайте продавца, ссылка — далее).

Кроме того, этот блок питания имеет возможность запоминания нескольких настроек и интерфейс USB для связи с компьютером.

Цена на этот блок непременно заставит потребителя этот блок питания уважать и обращаться с ним с осторожностью. Она составляет $284 с учётом доставки в Россию.

Посмотреть актуальную цену и/или купить на Алиэкспресс можно здесь.

Только что приведённая небольшая подборка не может охватить всё многообразие моделей лабораторных блоков питания, но показывает основные их классы.

Лабораторные блоки питания могут отличаться не только по мощности, но и по способу управления (цифровое или аналоговое), наличию памяти режимов, индицируемым параметрам, количеству каналов, и, наконец, по способу формирования выходного напряжения — импульсные или линейные блоки питания.

Линейные блоки питания — самые дорогие и тяжелые, поэтому их применение должно быть технически оправдано. Обычно они применяются в тех сферах, где предъявляются повышенные требования к уровню высокочастотных пульсаций и помех.

Во всех остальных случаях можно применять импульсные блоки питания, цена на которые — достаточно гуманная.

Лабораторный блок питания с регулировкой напряжения и тока

Лабораторный блок питания

просьба собирать её по печатной плате, которую я для вас сделал, чтобы избежать всевозможных ошибок при монтаже.

Печатная плата для схемы

Основа схемы была взята из зарубежного журнала, только я увеличил немного мощности, более детально протестировал её, в итоге от себя добавил дополнительный силовой транзистор, ну и сама плата естественно была модернизирована. Получился отличный блок питания с хорошей нагрузочной способностью, а стабилизация осталась на достаточно высоком уровне.

Читайте также:  Маломощный лабораторный источник питания на LM317

Лабораторный блок питания с регулировкой напряжения и тока

Основной недостаток линейных схем заключается в их малом КПД, а при конструировании таких источников питания возникают проблемы с охлаждением силовых транзисторов, поэтому очень желательно использовать трансформатор с несколькими обмотками и систему коммутации.

Наиболее простейший вариант показан на фото.

Схема система коммутации.

Стоит указать то, что сейчас многие отдают предпочтение импульсным лабораторным источником питания у которых кпд может доходить до 90 и более процентов, но больше ценится именно линейные источники питания. Профессиональные линейные блоки питания всегда дополняют узлом коммутации обмоток.

Блок питания может обеспечить на выходе стабильное напряжение от 0 до 35-38 вольт, а выходной ток может доходить до 5-6 ампер.

Измерение нагрузки.

Кстати ток также стабилизирован, то есть выставленное значение тока будет сохраняться при изменениях входного и выходного напряжения, и не зависит от выходной нагрузки.

Выставили ток в 1 ампер и даже при коротком замыкании у вас он будет ограничен одним амперам.

Измерение в 1 ампер.

А вот собственно и модернизированная схема.

Лабораторный блок питания с регулировкой напряжения и тока, схема

Я снизил сопротивление датчика тока до 0,1 оМа,

Лабораторный блок питания с регулировкой напряжения и тока

добавил второй силовой транзистор параллельно первому,

Лабораторный блок питания с регулировкой напряжения и тока

но в эмиттерных цепях каждого транзистора стоит токо-выравнивающий или балластный резистор.

Лабораторный блок питания с регулировкой напряжения и тока

Силовые транзисторы можно любые соответствующей мощности, ток коллектора транзистора желательно 10 ампер и выше, при этом мощность рассеивания должна быть 100 и более ватт.

Так как данная схема — линейная, я очень советую использовать транзисторы в металлических корпусах, на крайняк транзисторы в корпусе ТО247, чтобы не возникли проблемы с теплоотдачей.

Транзисторы в железных корпусах.

В схеме имеем три мощных резистора, балластные советую взять на 5 ватт, а вот датчик тока и на 10 ватт не помешает.

Лабораторный блок питания с регулировкой напряжения и тока

Балластные резисторы советую взять сопротивлением 0,22 Ома у меня они к сожалению закончились, поэтому поставил на 0,1 Ом, но если транзисторы имеют максимально идентичные параметры, то такое решение даже лучше.

Лабораторный блок питания с регулировкой напряжения и тока

В моём случае, в качестве силовых транзисторов изначально использовал ключи 2SD209 по сути это аналог ключей MJE13009, оба варианта очень часто применяются в компьютерных блоках питания.

Лабораторный блок питания с регулировкой напряжения и тока

Каждый такой транзистор может рассеивать 100-130 ватт мощности, но лишь в том случае, если имеется хорошее охлаждение и вы уверены в подлинности транзисторов, но их основная проблема слишком низкий коэффициент усиления по току, всего около 20.

Аналогичное ключи ставить я крайне не рекомендую по нескольким причинам. Во-первых регулировка будет нелинейной из за малого усиления ключей, по этой же причине управлять такими транзисторами тяжело, поэтому драйверный ключик будет жестко нагреваться и ему будет нужен небольшой радиатор.

Очень советую транзисторы в металлических корпусах, наподобие 2N3055, для таких схем они идеально подходят. Металлический корпус, приличная мощность и ток коллектора, а коэффициент усиления по току около 200, как раз то, что нужно.

Я в итоге поставил ключи 2SD1047, они обладают приличным усилением, применяются как в источниках питания, так и в выходных каскадах усилителей мощности низкой частоты.

Лабораторный блок питания с регулировкой напряжения и тока

Радиатор для ключей удобно использовать общий, притом изолировать ключи прокладками не нужно, так как подложки или коллекторы в нашей схеме общие.

Лабораторный блок питания с регулировкой напряжения и тока

Лабораторный блок питания с регулировкой напряжения и тока

После подачи питания на схему стабилизатора нужно путём вращения данного, подстроечного резистора выставить максимальный выходной ток,

Лабораторный блок питания с регулировкой напряжения и тока

допустим 5 ампер, далее выставляем максимальное напряжение на выходе, тут всё зависит от того, какой у вас источник питания, какой у него ток и напряжение на выходе, то есть данный стабилизатор без проблем можно скорректировать под любой источник питания.

Читайте также:  Догчейзер или Ультразвуковой генератор для отпугивания собак на микросхеме К561ЛЕ5, схема

Введите электронную почту и получайте письма с новыми поделками.

Теперь подаем питание на вход стабилизатора и проверяем минимальное, выходное напряжение — оно как видим 0 вольт, что и требовалось доказать, регулировка очень плавная во всём диапазоне.

Лабораторный блок питания с регулировкой напряжения и тока

Теперь проверим ток, минимальный выходной ток можно скинуть вплоть до 0, а максимальных 5 ампер схема выдают без проблем.

Лабораторный блок питания с регулировкой напряжения и тока

Один из самых важных тестов — насколько просядет выходное напряжение при определенных токах, ну давайте посмотрим, но перед этим важно указать, что на проводах, измерительном шунте амперметра и на самом стабилизаторе, а также на токо-выравнивающих резисторах будут падения напряжения, то есть на указанных участках будут просадки, это в случае любого источника питания.

Ток 1 ампер, просадка около 0,1 вольта,

Лабораторный блок питания с регулировкой напряжения и тока

ток 3 ампера просадка всего 0,4 вольта

Лабораторный блок питания с регулировкой напряжения и тока

и наконец максимальный ток 5 ампер, просадка 0,65 вольт, без измерительного оборудования эти цифры были бы гораздо меньше.

Лабораторный блок питания с регулировкой напряжения и тока

Проверим стабильность выходного напряжения при резких изменениях входного, ну например перепады в сети.

Как видим стабилизатор держится молодцом, при изменении входного напряжения на 10 вольт выходное изменяется лишь на 50-70 милливольт.

Лабораторный блок питания с регулировкой напряжения и тока

А теперь пульсации на выходе, при итоге в 1 ампер пульсации не более 20 милливольт, при токе в 3 ампера — около 25-30 милливольт,

Лабораторный блок питания с регулировкой напряжения и тока

а при максимальном токе в 5 ампер, пульсации на выходе около 50-60 милливольт, согласитесь это неплохой показатель для блока питания такого уровня.

Лабораторные блоки питания постоянного тока (389)

Лабораторные блоки питания служат источниками вторичного питания различных радиоэлектронных устройств. Они обеспечивают стабилизированным выходным напряжением и током электронные схемы при проведении лабораторных исследований или в процессе ремонта.

Полезные статьи

Как выбрать лабораторный блок питания?

Сравнение линейных и импульсных блоков питания

FAQ – Часто задаваемые вопросы по блокам питания

Цифровой источник питания MAISHENG MS3010D с двумя режимами стабилизации
Выходное напряжение: 0 – 30 В (регулируемое)
Выходной ток: 0 – 10 А (регулируемый)
Тип: импульсный
Защита от: перенапряжения, перегрузки по току, перегрева
Обратите внимание: компания MAISHENG провела ребрендинг, название модели сменилось с MS3010D на MS002. Название модели блока питания варьируется в зависимости от партии поставки. Технические характеристики блока питания остались без изменений.

Прецизионный источник питания MAISHENG MS305D в прочном металлическом корпусе
Выходное напряжение: 0 – 30 В (регулируемое)
Выходной ток: 0 – 5 А (регулируемый)
Тип: импульсный
Защита от: перенапряжения, перегрузки по току, перегрева
Обратите внимание: компания MAISHENG провела ребрендинг, название модели сменилось с MS305D на MS001. Название модели блока питания варьируется в зависимости от партии поставки. Технические характеристики блока питания остались без изменений.

Источник питания постоянного тока MAISHENG MP3030D с полным комплексом защиты
Выходное напряжение: 0 – 30 В (регулируемое)
Выходной ток: 0 – 30 А (регулируемый)
Тип: импульсный
Защита от: перенапряжения, перегрузки по току, перегрева, перегрузки по мощности
Обратите внимание: компания MAISHENG провела ребрендинг, название модели сменилось с MP3030D на MP001. Название модели блока питания варьируется в зависимости от партии поставки. Технические характеристики блока питания остались без изменений.
Товар представлен в демозале

Источник питания постоянного тока DPS3010U с функцией защиты от короткого замыкания
Выходное напряжение: 0 – 30 В (регулируемое)
Выходной ток: 0 – 10 А (регулируемый)
Тип: импульсный
Защита от: перенапряжения, перегрузки по току, короткого замыкания, перегрева

Модель: MP3020D
Выходное напряжение: 0 – 30 Вольт (регулируемое)
Выходной ток: 0 – 20 Ампер
Тип: Импульсный
Габариты: 28,5 х 20 х 15 см
Обратите внимание: компания MAISHENG провела ребрендинг, название модели сменилось с MP3020D на MP032. Название модели блока питания варьируется в зависимости от партии поставки. Технические характеристики блока питания остались без изменений.

Читайте также:  Автоматизированное управление вентилятором на микросхемах К561ЛА7 и К561ИЕ9, схема.

Малогабаритный импульсный блок питания Wanptek KPS305D высокой точности
Выходное напряжение: 0 – 30 В (регулируемое)
Выходной ток: 0 – 5 А (регулируемый)
Тип: импульсный
Защита от: перенапряжения, перегрузки по току, перегрева, короткого замыкания

Модель: MP6005D
Выходное напряжение: 0 – 600 В (регулируемое)
Выходной ток: 0 – 5 А (регулируемый)
Тип: импульсный
Защита от: перенапряжения, короткого замыкания, перегрева, перегрузки
Цифровое управление
Товар представлен в демозале

Модель: YAOGONG-1502DD
Выходное напряжение: DC 0 – 15 Вольт
Выходной ток: 0,6 – 2 Ампер
Тип: Импульсный
Защита от: перегрева, короткого замыкания

Компактный источник питания со стабилизацией по напряжению и току
Выходное напряжение: 0 В – 30 В
Выходной ток: 0 А – 6 А
Защита от короткого замыкания

Модель: MS155D
Выходное напряжение: 0 – 15 Вольт (регулируемое)
Выходной ток: 0 – 5 Ампер
Тип: Импульсный
Габариты: 26 * 12,5 * 15,5 см

Импульсный блок питания с одновременным отображением тока, напряжения и мощности
Выходное напряжение: 0 – 60 В (регулируемое)
Выходной ток: 0 – 5 А (регулируемый)
Тип: импульсный
Защита от: перенапряжения, перегрузки по току, короткого замыкания, перегрева

Малогабаритный лабораторный источник питания с точной и грубой регулировкой
Выходное напряжение: 0 – 30 В
Выходной ток: 0 – 6 А
Защита от: короткого замыкания, перегрева, перегрузки

Импульсный лабораторный источник питания с удобной регулировкой напряжения и тока
Выходное напряжение: 0 – 60 В (регулируемое)
Выходной ток: 0 – 50 А (регулируемый)
Тип: Импульсный
Защита от: перегрузки по току, перегрева, перегрузки по мощности, повышенного напряжения, короткого замыкания

Модель: KA3005D
Выходное напряжение: 0 – 30 Вольт
Выходной ток: 0 – 5 Ампер
Тип: Линейный (трансформаторный)
Габариты: 11 х 15,6 х 26 см

Регулируемый источник питания MAISHENG MS605D мощностью 300 Ватт
Выходное напряжение: 0 – 60 В (регулируемое)
Выходной ток: 0 – 5 А (регулируемый)
Тип: импульсный
Защита от: перенапряжения, перегрузки по току, перегрева

Модель: MP4001D
Выходное напряжение: 0 – 400 В (регулируемое)
Выходной ток: 0 – 1 А (регулируемый)
Тип: импульсный
Защита от: перенапряжения, короткого замыкания, перегрева, перегрузки
Стабилизированный выход

Модель: MP1530D
Выходное напряжение: 0 – 15 Вольт (регулируемое)
Выходной ток: 0 – 30 Ампер
Тип: Импульсный
Габариты: 28,5 * 20 * 15 см
Обратите внимание: компания MAISHENG провела ребрендинг, название модели сменилось с MP1530D на MP032. Название модели блока питания варьируется в зависимости от партии поставки. Технические характеристики блока питания остались без изменений.

Лабораторный источник питания со стабилизацией по току и напряжению
Выходное напряжение: 0 В – 60 В
Выходной ток: 0 А – 10 А
Защита: от перенапряжения, перегрузок, перегрева

Одноканальный источник питания постоянного тока с автоматическим переключением CC и CV
Выходное напряжение: 0 – 120 В (регулируемое)
Выходной ток: 0 – 3 А (регулируемый)
Тип: импульсный
Защита от: короткого замыкания

Лабораторный источник питания – мечта любого радиолюбителя!

Лабораторные блоки питания – профессиональный прибор для лабораторных и регулировочных работ. Данные прецизионные приборы обладают высокой стабильностью и малым уровнем пульсаций. Современные модели предусматривают защиту от короткого замыкания, перегрузок по току и перегрева.

В зависимости от принципа работы лабораторные источники питания принято делить на:

  • Линейные (трансформаторные ИП) – преобразуют электроэнергию, получаемую от питающей сети переменного напряжения, при помощи силового трансформатора, имеют отличные значения нестабильности по напряжению и току, но обладают значительным весом и габаритами;
  • Импульсные – малогабаритные блоки питания, преобразующие электроэнергию во вторичную цепь на более высокой частоте, благодаря чему имеют большую удельную мощность и КПД, а также рассчитаны на широкий диапазон допустимого напряжения.
Читайте также:  Цифровые частотные фильтры высоких и низких частот

По типу различают:

  • Одноканальные блоки питания;
  • Многоканальные блоки питания, которые, в свою очередь, подразделяются на: лабораторные двухканальные блоки питания и трехканальные источники питания.

Многоканальные блоки питания применяются для питания нескольких участков цепи различными напряжениями, либо для питания одной цепи разнополярным напряжением, либо для того, чтобы с помощью одного канала подать питание на схему, а вторым каналом смоделировать некоторый входной информационный сигнал.

Количество выходных каналов многоканального источника питания означает количество регулируемых выходов напряжения.

В большинстве случаев применяются одноканальные блоки питания. Теоретически, 1-н многоканальный источник питания можно заменить 2-мя одноканальными, но на практике, в случае импульсных блоков питания вероятно появление повышенных пульсаций на выходе и резонансных эффектов.

Прежде, чем принять решение о покупке регулируемого лабораторного блока питания, следует понять для себя, для каких задач Вы собираетесь его использовать и обратить внимание на поддерживаемые напряжение питания и ток.

В ассортименте нашего интернет-магазина Вы найдете большой выбор источников питания YIHUA, YAOGONG и MAISHENG, в то числе и мощные лабораторные блоки питания до 3000 Вт. Мы всегда готовы ответить на любые интересующие Вас вопросы по нашей продукции и помочь определиться с выбором.

Прямо сейчас Вы можете купить регулируемый лабораторный блок питания оптом и в розницу для своих предприятий, лабораторий и личных нужд! Мы предоставляем гарантию на срок 12 месяцев и осуществляем быструю доставку в любые города России – Москва, Санкт-Петербург, Новосибирск, Екатеринбург, Воронеж, Владивосток, Хабаровск, Краснодар, Брянск, Ростов-на-Дону, Нижний Новгород, Челябинск, Казань, Красноярск, Омск, Самара, Волгоград, Барнаул и другие. Заказ Вы можете оплатить при получении. С нами выгодно!

Подобрать аналог

Данный товар был снят с поставок либо временно отсутствует в продаже.

Оставьте заявку. С вами свяжется наш менеджер и поможет подобрать аналогичный товар.

Лабораторный блок питания своими руками

На этой странице вы найдёте видеоинструкции, схемы и советы по сборке лабораторного блока питания из китайских модулей своими руками. Здесь представлены два варианта регулируемых блоков питания: полноразмерный “всё-в-одном” с мощностью около 100 Ватт и размерами корпуса 170х120х45 мм, а также мини-версия с отдельным блоком питания, мощностью 50 Ватт (100 Ватт пик), и компактным корпусом 100х60х25 мм. Оба проекта имеют регулируемое напряжение, регулируемый ток (ограничение по току), вольтметр и амперметр. Делитесь своими вариантами исполнения в теме проекта в нашем сообществе!

ВАМ ОБЯЗАТЕЛЬНО ПРИГОДИТСЯ

Паяльники, припой

Мультиметры

Радиодетали

Блоки питания

Инструменты

Шуруповёрты

КИТАЙСКИЕ ЛБП

blank

300W, 0-30V, 0-10A, CC/CV, QC

blank

300W, 30V/10A или 60V/5A, CC/CV

DIY ВЕРСИЯ

ВИДЕО

КОРПУС ПОД 3D ПЕЧАТЬ

Ещё один классный 3D подгон от Евгения Пахтусова: корпус под печать. Скачать можно с Яндекс Диска или с FTP сайта

КОМПОНЕНТЫ

AC DC 24V 6A

DC ВС XL4016

40 мм вентилятор

Выключатель

Термореле

Термореле мини

Понижайка

Гнёзда С8

Гнёзда С8

Провод С8

Силовой провод

Гнёзда под банану

Клеммник

Банана – крокодилы

USB 1 выход 3A

USB 2 выхода

USB QC 4.0

МИНИ ВЕРСИЯ

ВИДЕО

КОРПУС ПОД 3D ПЕЧАТЬ

Крутой корпус от Андрея Бесараба (EVERYLIGHT). Файлы можно скачать с Яндекс.диска или из статьи (статья включает рекомендации по сборке)

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: