Водородное топливо

Плюсы и минусы водородного топлива

Водородное топливо уже давно занимает ведущие позиции среди других источников энергии. Обладающий уникальными свойствами, водород по праву называют топливом ближайшего будущего. По сравнению с дизельным и бензиновым топливом, у него больший КПД, а также экологичность. Попытаемся разобраться, почему его до сих пор не используют?

Водородный коктейль

Хотя водород обладает чудесными характеристиками, его почти не применяют на автотранспорте потому, что люди привыкли использовать бензин, хотя он и дорожает с каждым днем. Также ведущие автокомпании постоянно откладывают сроки перехода на водородное топливо, мотивируя это тем, что установки для получения водорода появятся только к 2030 году. Европейские и американские аналитики могут быть правы в этих подсчетах, но есть множество доказательств экстренного перевода на водород целого автопарка, причем буквально за 10 -12 дней!

История двигателя внутреннего сгорания на водороде

Применение водорода в качестве топлива началось еще в XIX веке, когда французский изобретатель Франсуа Исаака де Риваз в 1806 году разработал самый первый в мире ДВС, потребляющий водородное топливо. Необходимую электрическую энергию он получал методом электролиза воды. Позже бельгийский изобретатель Жан Жозеф Этьен Ленуар заставил самоходный экипаж двигаться с помощью энергии водорода. Так бы водород и служил бы человечеству в качестве основного топлива, но в 1870 году в ДВС стали применять бензин, сведя на нет первые опыты с водородным топливом.

Водородное топливо в блокадном Ленинграде
О водороде вспомнили только в блокадном Ленинграде в конце 1941 года, благодаря военному технику Б. И. Шелищу, который предложил использовать отработанный водородный газ для заправки автотранспорта. От налетов вражеской авиации Ленинград защищался зенитными орудиями, а также заградительными аэростатами, наполненными водородом, чтобы помешать прицельной бомбардировке города.

Когда водородные аэростаты спускались на землю, их использовали в качестве альтернативного источника топлива. Всего лишь за неделю группа техников переоборудовала на водородное топливо 600 грузовиков ГАЗ. После войны об этом изобретении снова забыли, перейдя опять на бензин.

В 1970 годах, когда произошел энергетический кризис, люди опять оценили необходимость альтернативных источников энергии. Так, Украинским ИПМ был переоборудован весь свой автомобильный парк водородное топливо, отлично справившись с топливным кризисом. Об успешных экспериментах снова забыли после распада советского союза.

Современные автомобили на водороде находятся пока в стадии проектирования, а вернее выпускать серийно опытные модели пока не собираются из-за неразвитой инфраструктуры заправок автотранспорта водородным топливом. В промышленных масштабах получить водород электролизом воды недешево, поэтому автокомпании пока не спешат на него переходить, ожидая более дешевый и простой способ получения топлива.

Преимущества водородных ДВС

Главное неоспоримое преимущество автомобилей на водороде – это высокая экологичность, так как продуктом горения водорода является водяной пар. Конечно, при этом сгорают еще различные масла, но токсичных выбросов гораздо меньше, чем у бензиновых выхлопов.

Простая конструкция.

Отсутствие дорогостоящих систем топливоподачи, которые к тому же опасны и ненадежны.

Бесшумность.

КПД электродвигателя на водородном топливе намного выше, чем у ДВС.

Имеются и недостатки у автомобилей на водородном топливе:

Дорогой и сложный способ получений топлива в промышленных объемах.

Отсутствие водородной инфраструктуры заправок автотранспорта.

Не разработаны стандарты транспортировки, хранения и применения топлива на водороде.

Несовершенство технологий хранения такого топлива.

Дорогие водородные элементы.

Большой вес транспорта. Работа электродвигателя на водородном топливе требуют водородные преобразователи тока и мощные аккумуляторные батареи, которые весят не мало, а также обладают внушительными габаритами.

Существует опасность возгорания и взрыва при работе водорода с традиционным топливом.

Ознакомившись с достоинствами и недостатками водородного топлива можно понять, почему до сих пор откладывается серийный выпуск водородных автомобилей. Однако из-за ухудшающейся экологии этот альтернативный источник энергии может оказаться единственным решением проблемы.

Производители транспорта на водородном топливе

Мировые производители все же проводят испытание в этой сфере и даже выпускают автотранспорт на водородном топливе:

Toyota — модель Toyota Highlander FCHV;

Ford Motor Company проводит испытания с концептом Focus FCV;

Honda со своей моделью Honda FCX;

Hyundai выпускает Tucson FCEV;

Daimler AG отвечает за модель Mercedes-Benz A-Class;

Перспективы развития

Все же водород является единственной приемлемой экологической энергией с огромным будущим. От ученых зависит только разработать инфраструктуру, обнаружить способ добычи водорода, наладить порядок в инструкциях по эксплуатации топлива, и тогда навсегда уже забыть о выхлопных газах, нефтяных вышках и других проблемах бензиновой зависимости.

Водородное топливо

LH2 является самым экологически чистым видом моторного топлива, поэтому его перспективы очевидны

Водородное топливо

В Австралии на бурых углях в штате Виктория отрабатывается технология технология газификации угля с последующим выделением водорода, вернее удаления серы, ртути и двуокиси углерода (СО2).

В Норвегии – Nel Hydrogen отрабатывает технологию использования ВИЭ для высокотемпературного электролиза для разделения воды на водород и кислород, который будет выбрасываться в атмосферу.

Kawasaki Heavy Industries разрабатывает морской танкер – водородовоз для транспортировки жидкого водорода ( LH2).

Водород

Водород (H) является самым распространенным элементом на Земле, но в обычных условиях он не встречается ни в виде водорода H, ни в виде газообразного водорода (H2).

Благодаря своим характеристикам он легко вступает в реакцию с другими органическими соединениями с образованием, например, воды (H2O).

Во время этой реакции образования воды из водорода и воздуха выделяется энергия, которую можно использовать в качестве электричества.

Чтобы сделать эту реакцию полезной для промышленного производства электроэнергии, необходимо произвести водород, например из воды путем разделения атомов на кислород и водород посредством электролиза.

Читайте также:  Сигнализация Старлайн А91 инструкция по эксплуатации и установке

Есть другие технологии:

  • использование газов, оставшихся от химических процессов, например метана, угля, нефти и биомассы.

Для производства водорода существуют разные способы, которые сильно различаются как с точки зрения экологичности, так и с точки зрения стоимости.
Экологичность – важный критерий производства водорода.
Чем больше оксидов углерода выделяется при производстве водорода, тем менее экологичным он будет считаться.
Для простоты каждый «сорт» произведенного по разным технологиям принято обозначатьцветом, хотя правильнее – по углеродному следу.

Реакция взаимодействия водорода с кислородом происходит с выделением тепла.

Если взять 1 моль H2 (2 г) и 0,5 моль O2 (16 г) при стандартных условиях и возбудить реакцию, то согласно уравнению

после завершения реакции образуется 1 моль H2O (18 г) с выделением энергии 285,8 кДж/моль.

Для сравнения: теплота сгорания ацетилена – 1300 кДж/моль, пропана – 2200 кДж/моль.

1 м³ водорода весит 89,8 г (44,9 моль), поэтому для получения 1 м³ водорода будет затрачено 12832,4 кДж энергии.

1 кВт*ч = 3600 кДж, поэтому получим 3,56 кВт*ч электроэнергии.

Целесообразность перехода на водородное топливо можно оценить, сравнив имеющийся тариф на 1 кВт*ч электричества и, к примеру, стоимость 1 м³ газа или стоимость другого энергоносителя.

Получение водорода

  • 1.Электролиз водных растворов солей:

2NaCl + 2H2O → H2↑ + 2NaOH + Cl2

  • 2.Пропускание паров воды над раскаленным коксом при температуре около 1000°C:
  • 3.Из природного газа.

Конверсия с водяным паром: CH4 + H2O ⇄ CO + 3H2 (1000 °C) Каталитическое окисление кислородом: 2CH4 + O2 ⇄ 2CO + 4H2

  • 4. Крекинг и реформинг углеводородов в процессе переработки нефти.
  • 5. Действие разбавленных кислот на металлы. Для проведения такой реакции чаще всего используют цинк и соляную кислоту:
  • 6.Взаимодействие кальция с водой:
  • 7.Гидролиз гидридов:
  • 8.Действие щелочей на цинк или алюминий:
  • 9 .С помощью электролиза. При электролизе водных растворов щелочей или кислот на катоде происходит выделение водорода, например:

2H3O + + 2e – → H2↑ + 2H2O

  • Биореактор для производства водорода

Физические свойства

Химические свойства

Молекулы водорода Н довольно прочны, и для того, чтобы водород мог вступить в реакцию, должна быть затрачена большая энергия:

Поэтому при обычных температурах водород реагирует только с очень активными металлами, например с кальцием, образуя гидрид кальция:

Ca + Н2 = СаН2 и с единственным неметаллом – фтором, образуя фтороводород:

С большинством же металлов и неметаллов водород реагирует при повышенной температуре или при другом воздействии, например при освещении.

Он может «отнимать» кислород от некоторых оксидов, например:

Записанное уравнение отражает реакцию восстановления – процесс, в результате которого от соединения отнимается кислород; вещества, отнимающие кислород, называются восстановителями (при этом они сами окисляются).

Реакция восстановления противоположна реакции окисления.

Обе эти реакции всегда протекают одновременно как 1 процесс: при окислении (восстановлении) одного вещества обязательно одновременно происходит восстановление (окисление) другого.

С галогенами образует галогеноводороды:

F2 + H2 → 2 HF, реакция протекает со взрывом в темноте и при любой температуре, Cl2 + H2 → 2 HCl, реакция протекает со взрывом, только на свету.

С сажей взаимодействует при сильном нагревании:

Водород — топливо будущего

Проекты по использованию водорода в качестве топлива будущего в нашей стране, похоже, переходят из области научной фантастики в практическую плоскость. Россия, известная как крупный поставщик на международном рынке нефти и газа, в скором времени будет поставлять на европейские рынки водород. Продажи его сейчас только начинают набирать темпы роста. По расчетам специалистов, к 2050 году потребность в водороде увеличится в десятки раз и займёт 15−20% всего мирового рынка энергоресурсов. Начиная с 2040 года, в Великобритании и странах Европы планируют прекратить продажу машин с бензиновыми двигателями. Это решение должно простимулировать эволюцию водородной энергетики и всей её технической составляющей в целом.

Засучив рукава, за дело берутся российские атомщики. Так, в конце 2018 года госкорпорация «Росатом» заявила о своём решении включить водородную энергетику в состав своих «приоритетных направлений технологического развития в составе отраслевого национального проекта». А в роли основного заказчика технических решений для потребностей атомно-водородной энергетики выступает АО «ВНИИАЭС».

Тут важно будет пояснить, что для атомщиков водород – это скорее побочный продукт технологического процесса, как и попутный газ у нефтяников. Скапливаясь, он становится опасным, и его проще сжечь, чем найти какое-то практическое применение. Ох, не зря смесь водорода с кислородом называется «гремучий газ». Даже небольшая концентрация примеси кислорода в водороде делает его взрывоопасным. На АЭС типа ВВЭР в активной зоне реактора и в системе защитных оболочек происходит радиолиз воды с выделением водорода. Для нейтрализации этого опасного явления и обеспечения взрывобезопасности АЭС используют различные системы контроля и газоочистки. Разработкой таких систем занимается АО «ВНИИАЭС», с богатым опытом работы в направлении водородной энергетики и большим числом собственных наработок. Водород нейтрализуют различными способами, но чаще всего сжигают.

Системой «дожигания водорода» оснащены некоторые АЭС в европейской части России:
Кольская АЭС – 4 энергоблока;
Ростовская АЭС – 2 энергоблока;
Балаковская АЭС – 4 энергоблока;
Нововоронежская АЭС – 2 энергоблока;
Калининская АЭС – 3 энергоблока.

По всей видимости, светлые головы учёных-атомщиков решили эту проблему так же, как и известный персонаж фильма “Кавказская пленница”: “Тот, кто нам мешает, тот нам поможет!”

Зачем понапрасну сжигать водород, решили атомщики, когда можно зарабатывать на его продаже. Тем более что в Европе сейчас спрос на него возрастает год от года.

В течение 2019 года в АО «ВНИИАЭС» запланированы формирование заявок на аванпроекты и проработка технических требований технологии выработки, накопления и транспортировки водорода.

Планируются следующие инновационные разработки:
• металлогидридный термосорбционный компрессор с давлением водорода на выходе 80 МПа и производительностью 108 нм3Н2/час;
• электролизер-генератор водорода производительностью 108 нм3 Н2/час;
• установки производства сплавов (сорбентов) производительностью 500 кг/сут.;
• блок производства метилциклогексана гидрированием толуола и логистического центра транспортировки и доставки продуктов ВКЭК (водород/ кислород) к потребителям и водород-хабу.

Читайте также:  Haval H9 2020 рестайлинг — фото, цена и комплектация, характеристики модели Хавал Н9

Также следует отметить проблему, существующую в энергосистемах с неравномерным графиком нагрузок в течение суток. Пиковые нагрузки днём чередуются спадами потребления в ночное время. Переключая часть мощности АЭС на генерацию водорода в периоды спада потребления, можно будет уравнивать графики потребления мощности. Режим работы с равномерным распределением нагрузки является наиболее предпочтительным для всего генерирующего электрооборудования.

В одном из проектов прорабатывается возможная дозагрузка генерирующих мощностей части АЭС в европейской части России для производства товарного водорода под нужды потребителей. Для этих целей рассматривается Кольская АЭС и готовящаяся сейчас к вводу в эксплуатацию ПАТЭС (плавучая атомная теплоэлектростанция) «Академик Ломоносов». Летом 2019 года ПАТЭС планируют разместить у берегов Чукотского АО, в порту Певек. Планируется, что ПАТЭС сможет заменить собой два крупных энергообъекта – Билибинскую АЭС и Чаунскую ТЭЦ.

В заявлении сказано:

Что касается тепла, выделяемого при сжигании водорода с кислородом, то стоит отметить высокую температуру горения этой смеси (почти 3000 градусов Цельсия) с выделением большого количества энергии (до 24 000 Дж/Г). Это свойство применяется при плавлении тугоплавких металлов, кварца и т.п., для создания сплавов, резки и сварки металла. При сжигании водорода не происходит образование вредных веществ, а образуется лишь вода.

Остановимся отдельно на водородных топливных элементах, чтобы читателю было понятно, о чём идёт речь. Можете представить себе батарейку с «бесконечным» зарядом, в которой источником энергии являются не те компоненты, из которых состоит батарея, а постоянно протекающие через нее газы — водород и кислород. Внутри топливного элемента происходит окислительная реакция (2H2 + O2 → 2H2O), а источником тока выступает движение электронов в ионной среде. В качестве катализатора здесь используется дорогостоящая платина, но в скором времени учёные её планируют заменить более дешевыми материалами на основе нанотехнологии.

Это не фантастика. Несколько лет назад начался первый серийный выпуск легкового автомобиля, работающего на водороде. Автомобиль имел гибридный электроводородный «двигатель». Энергия производится с помощью окислительной реакции водорода в электрохимическом генераторе. Вместо вредного выхлопа — вода.

Знакомьтесь, Toyota Mirai (что означает «будущее»). Мощность двигателя 154 л.с., крутящий момент 335 Нм. Время разгона машины от 0 до 100 км/ч всего 9 секунд. Заправка водородом занимает до 5 минут. В машине установлено 2 баллона высокого давления ёмкостью в 60 и 62,4 л водорода. Между прочим, сейчас практически каждый крупный производитель автомобилей ведет свои разработки на топливных элементах. Основным препятствием развития этого направления является отсутствие достаточного числа водородных АЗС, но это дело наживное.

Вот так это выглядит в реальности по всему миру.

Немцы даже выпустили детский набор H2-Sprinter, который представляет собой комплект: гоночный автомобиль с водородным топливным элементом, водородная заправка (электролизер) и солнечный модуль, вырабатывающий электроэнергию для электролиза.

Дети наливали из-под крана воду в «заправочную» станцию, ждали, пока солнце сделает всю работу, заправлялись и гоняли эту машинку на водородном топливе.

В Америке компания Hyundai в рекламных целях предлагает своим клиентам на Tucson FCEV заправляться водородом бесплатно.

А что, мы снова опоздали на этот «праздник жизни»? Где же наши разработки?

Об этом более подробно можно почитать здесь.

Автомобиль «Антэл»

Серия экспериментальных автомобилей «Антэл»: был такой отечественный проект с участием отечественных НИИ и предприятий (концерн «АвтоВАЗ», РКК «Энергия» и др.). При разработке «Антэл-1» на базе ВАЗ-2131 все основные компоненты, разработанные, между прочим, для «Буранов», разместили в багажном отделении. Кроме водородных, в машине располагались и кислородные баллоны, что делало её эксплуатацию небезопасной. Тем более что рядом с кислородом находилось ещё и масло, повышая опасность возгорания и взрыва.

Следующую машину разработали на базе ВАЗ-2111, но главное — избавились от взрывоопасных баллонов с кислородом, заменив их воздушным компрессором. Машина стала значительно легче и улучшила свои характеристики. Пробег автомобиля до 350 км, максимальная скорость до 100 км/ч. Общий объём водородных баллонов — 90 л. Максимальная мощность электрического двигателя — 90 кВт.

Скорее всего, противниками проекта выступили крупнейшие нефтяные компании или наши злейшие друзья — «западные партнёры», хотя формально финансирование этих разработок на ВАЗ в 2004 году было прекращено из-за «сложного финансового положения». А когда в 2005 году сменилось руководство автозавода, то проект «Антэл» полностью свернул свою деятельность.

Теперь мы с завистью смотрим на зарубежные автомобили с водородными топливными элементами, когда могли бы их опередить в своё время. В других странах уже созданы электропоезда, яхты и даже самолёты на водородных топливных элементах. Да, они снова нас обогнали.

Наш президент совсем недавно говорил о необходимости «технологического прорыва» в развитии страны — так вот же эти технологии! Если мы их не будем внедрять, то это всё равно не остановит прогрессирующее развитие водородных технологий по всему земному шару. И всё-таки хочется надеяться, что мы будем не только продавать в другие страны свои углеводородные ресурсы или водород, а ещё и сами сможем в полной мере пользоваться «высокими технологиями» собственного производства.

Переход на водород

Технологические решения для широкого использования самого эффективного топлива уже существуют

Водород — это самое энергоемкое и легкое вещество из всех видов топлива. Его производство не относится к инновациям — он производился миллионами тонн еще в советские времена, когда его использовали для производства аммиака для получения азотных удобрений.

Читайте также:  Замена воздушного фильтра на автомобиле renault duster: фото и видео

Водород и сегодня используют для производства удобрений, повышения качества бензина, улучшения свойств стали, а также в пищевой промышленности для производства маргарина и твердых кондитерских жиров методом гидрогенизации растительных масел. Без него не обходятся все процессы гидроочистки, гидрообессеривания, гидрокрекинга, регенерации катализаторов. Его также широко применяют для охлаждения генераторов на электростанциях.

С тех пор как появилась перспектива перехода на водородную энергетику с углеводородной, потребность в водороде увеличилась на порядки. Сегодня эта перспектива стала реальностью, поскольку примерно десять лет назад была решена одна из основных проблем с его хранением для дальнейшего использования в качестве автомобильного топлива. Вместо тяжелых, дорогих и небезопасных стальных баллонов для сжатого под высоким давлением водорода стали применять легкие композитные емкости из углепластика, которые прекрасно помещаются в легковых автомобилях. Кроме того, стало возможным получать водород прямо по месту употребления. Появление таких технологий зажгло для водородной энергетики зеленый свет.

Около 20 лет назад во всем мире начали появляться автомобили на водороде, и бывшие выставочные центры пилотных моделей превратились в салоны-магазины серийных образцов. Количество автомобилей на водородном топливе сегодня исчисляется тысячами. Их стоимость составляет около $50–60 тыс. Серийные автомобили на водороде есть у Toyota, Hyundai, Honda. Предсерийные образцы тестируют Audi, Mercedes, BMW, Mazda, Ford и ряд других производителей. Все технические препятствия, столько десятилетий казавшиеся непреодолимыми, пройдены за считаные годы, и теперь вопрос только в экономической целесообразности для массового потребителя. В России такой автомобиль приобрел себе житель Красноярска, но в связи с отсутствием заправок в своем городе перевез машину в Москву и получает топливо в одном из научных институтов.

Как получить водород?

Для развития водородной энергетики нужно будет на государственном уровне решить вопрос, в каком виде доставлять водород к месту его получения. Дело в том, что водород содержится в очень многих видах ископаемых топлив.

«Наиболее дешевый водород получается методом паровой конверсии метана,— рассказывает заведующий отделом гетерогенного катализа Института катализа СО РАН Павел Снытников.— Другой способ — из аммиака. Для его транспортировки, как и для природного газа, в нашей стране даже существует трубопровод, так как аммиак сжижается всего при давлении 8,5 атмосферы. Третье решение — перевозка будущего водорода в виде метанола. В Китае метанол используют как автомобильное топливо. Но в России против метанола почему-то предубеждение, по-видимому, в связи с тем, что с давних пор у нас простой народ пил все, что горело, в том числе и метанол, и люди лишались зрения».

А вот получать его лучше всего там же, где будут потреблять, чтобы уйти от проблем транспортировки чистого водорода. Чтобы использовать водород, например, как автомобильное топливо, нужно закачать его в баллоны под давлением 700 атмосфер. Правда, на сжатие нужна дополнительная энергия. Не меньше энергии требуется на сжижение водорода, так что один из подходящих способов его транспортировки — это перевозка в химически связанном состоянии, например в виде метана, из которого водород должен производиться там же, где будет использоваться. То есть до заправки везут метан, а уже на самой заправке устанавливается небольшое производство, например, конвертер метана в водород. Но этот способ не очень хорош для экологии, поскольку на небольших производствах сложно обеспечить качественную очистку выбросов. Зато экономически он себя вполне оправдывает. Опыт Японии, Кореи и ряда других стран показал, что километр пробега на водороде выходит не дороже бензина. 4 кг водорода, закачанного в баллон, хватает примерно на 800 км пути обычного седана.

Получать водород можно практически из любого углеводородного топлива: из бензина, дизельного топлива или пропан-бутановых смесей. В Институте катализа им. Г. К. Борескова СО РАН ведется работа по гранту РНФ по тематике получения водорода из дизельного топлива. Также разрабатываются методы получения водорода даже из органических носителей, например из бор-гидридов. Главные задачи на будущее развитие водородной энергетики — это не только получение водорода, но и его хранение. Жидкий водород можно хранить только при низких температурах, поэтому его использовали только в критически важных областях, например, как ракетное топливо.

Если отвлечься от автомобилей и обратить внимание на энергообеспечение более крупных стационарных объектов, например жилых или промышленных комплексов, то вся идеология водородной энергетики строится на ее связке с другими источниками энергии. Например, с возобновляемыми — гидро-, ветряными, солнечными электростанциями или с крупными атомными электростанциями. Производство такой энергии идет в одном режиме, а тратится потребителями она в другом, поэтому, когда есть излишки энергии, ее можно тратить на получение водорода даже из обычной воды методом электролиза.

Голубая мечта о зеленом водороде

Электролиз — это способ получения водорода из воды, который, к сожалению, требует больших энергозатрат, поэтому он оправдан только в тех случаях, когда вырабатываемую энергию необходимо запасти, пусть даже и с невысоким КПД. Лучше всего использовать для этого источники, где постоянно возникают достаточно большие излишки энергии. Емкости аккумуляторов для ее сохранения не хватает, кроме того, аккумуляторы быстро разряжаются, а полученный методом электролиза водород — это гарантированный запас энергии, можно сказать, воплощение мечты о чистой энергии, так называемом зеленом водороде. К сожалению, пока всего 2% общего объема водорода в мире производится методом электролиза. 75% водорода получают из природного газа и 25% — сжиганием угля. Цены топлива, полученного по этим технологиям, также несопоставимы: $1,7 за 1 кг водорода из природного газа и $5–10 за водород, полученный электролизом. Впрочем, стоимость зависит от источника энергии. Например, от энергии АЭС зеленый водород вдвое дешевле ($3–5), чем от возобновляемых источников энергии.

Читайте также:  Как проверить генератор своими силами: проверка генератора не снимая с машины, реле-регулятора, диодного моста

Основные организации в России, заинтересованные в получении водорода — это компании «Росатом» и «Газпром». Атомные электростанции нуждаются в сохранении избытка энергии в виде водорода и дальнейшего его использования. А добывающая компания хочет перерабатывать природный газ в водород, имея соответствующие установки непосредственно в местах использования, например на автомобильных заправках. Для решения проблемы транспортировки водорода можно переводить его в спирты — метанол, диметиловый эфир, чтобы получать из них водород, что называется, «по требованию» для дальнейшего использования на энергоустановках. Это химия получения водородсодержащих компонентов, и она достаточно хорошо освоена.

Как перестать сжигать топливо

Вообще, заявления о том, что водород — это экологически чистое топливо, не совсем справедливы. Из школьного курса химии мы помним, что после сжигания водорода получается вода. Но горит-то он в воздухе, где высокое содержание азота, и в результате реакции кислорода и азота при высоких температурах мы получаем те же токсичные оксиды азота, что и при сжигании бензина, только в меньшем объеме. Собственно, водород здесь ни при чем: любое высокотемпературное горение вызывает в воздухе реакцию взаимодействия кислорода и азота с образованием оксидов. По этой причине получать электричество с помощью сжигания любого топлива — это не самый экологичный способ. А тем более углеводородного, которое сгорает с выделением выбросов углекислого газа в атмосферу. Чтобы решить проблемы с выбросами в атмосферу, нужно прекратить сжигать топливо и снизить градус его потребления до комнатной температуры. В этом могут помочь топливные элементы.

Применение водорода в топливных элементах является самым экологичным. Разные топливные элементы используют водород при разных температурах и могут быть более или менее привередливы к его чистоте. Низкотемпературные топливные элементы работают на чистом водороде, а высокотемпературные вполне удовлетворяются синтез-газом. Топливный элемент — это электрохимическое устройство, которое преобразует химическую энергию водорода в электрическую (процесс, обратный электролизу) с достаточно высоким КПД. Институт катализа СО РАН сотрудничает с российскими производителями топливных элементов — ГК «ИнЭнерджи» и Институтом проблем химической физики РАН, где были разработаны и созданы сверхлегкие топливные элементы для беспилотных летательных аппаратов. В настоящее время там ведутся разработки более крупных топливных элементов для автомобильных передвижных платформ. Рынок топливных элементов еще только формируется, поскольку область их применения постоянно растет. Появляются новые возможности в разработке — осваивается новый экономический сектор. Вопросы могут быть самые разные — например, обеспечение дальних трасс или камер видеонаблюдения источниками связи или возможность установки автономных вышек сотовой связи. Источники водородной энергии всегда работают как тандем «топливный элемент на водороде плюс аккумулятор». Аккумулятор способен сглаживать пиковые нагрузки, а топливный элемент обеспечивает длительную выработку электроэнергии.

Сегодня в мире на топливных элементах работают тысячи небольших энергоустановок. В США, Японии и некоторых странах Европы они уже около 30 лет снабжают водородной энергией небольшие частные поселки, большие и удаленные от города супермаркеты или промышленные объекты. В отличие от дизель-генераторов это намного более бесшумные системы, так что их широко используют как запасные источники энергии в случае сбоев в работе основного источника энергообеспечения.

Сколько стоит чистый воздух

В качестве грантового финансирования на развитие индустрии водородной энергетики некоторые страны ЕС ежегодно выделяют сотни миллионов евро, США — сотни миллионов долларов. Совокупные вложения Европы и США в эту отрасль исчисляются миллиардами. Сейчас многие компании во всем мире делают попытки использовать источники энергии на топливных элементах в самых разных областях. В ближайшие десятилетия может измениться сама концепция человеческого энергопотребления.

В России развитие топливных элементов исторически связано с космическими программами в середине ХХ века. Щелочные топливные элементы использовались во многих космических проектах, где требовались автономные энергоустановки.

В 2020 году правительство России утвердило энергетическую стратегию Российской Федерации на период до 2035 года и ключевые меры развития водородной энергетики. В этом же году был создан консорциум по водородной энергетике, куда вошли ведущие научные институты: Томский политехнический университет, Институт катализа СО РАН, Институт проблем химической физики РАН, Институт нефтехимического синтеза РАН, Самарский государственный технический университет и Сахалинский государственный университет. В программе развития водородной энергетики РФ намечено создание водородных кластеров и пилотных проектов по производству и экспорту водорода. Планируется развитие первых коммерческих проектов производства водорода. Сегодня в РФ появляются отдельные пилотные проекты с использованием водородной энергетики, но до массового внедрения пока не дошло: скорее производители демонстрируют свою готовность к реализации подобных проектов в случае выделения финансирования со стороны, например, госкорпораций. Так, в конце 2019 года в Санкт-Петербурге был запущен трамвай на водородном топливе, а ОАО «Газпром» и ОАО «РЖД» в качестве пилотного проекта обсуждают возможность запуска поезда на Сахалине на топливных водородных элементах.

PDF-версия

  • 21
  • 22
  • 23

Ставка на водород оправдана — вопреки подводным камням

Многие эксперты в развитых странах и в нашей стране предвещают скорый конец эры нефти и газа. Сместить их с трона призваны возобновляемые источники энергии и водород. Россия как значимый поставщик энергоносителей на мировые рынки не может остаться в стороне от такой смены вех в экономике. И нужно постараться получить из неё максимум выгоды.

Недавно канцлер Германии Ангела Меркель в ходе своего визита в Киев заявила, что “самое позднее через 25 лет газ из России в Европу не будет экспортироваться вовсе или в сильно меньших объёмах”. Исходя из этого, Меркель посоветовала Украине и другим странам начать “сотрудничать по водороду”. Год назад в Германии была принята Национальная стратегия развития водородной энергетики. В ней ставится цель создать нейтральную для климата экономику с сокращением выбросов СО2 на 95% от уровня 1990 года. При этом на водород планируется перевести не только транспорт, но и металлургию с нефтехимической промышленностью. До 2023 года Германия выделит на эти цели более 10 млрд евро, в том числе 2 млрд на международное сотрудничество.

Читайте также:  Замена и ремонт рабочего цилиндра сцепления ваз 2106, инструкции с фото и видео

Мир, озабоченный экологией и состоянием климата, всё больше склоняется к развитию водородной энергетики. Водород рассматривают как топливо будущего, так как его использование не приводит ни к каким вредным выхлопам, кроме обычной воды. Выработка “зелёного” водорода путём электролиза на основе ВИЭ тоже происходит без вреда для экологии. Пока ещё водород используют в основном для технических нужд промышленности, но ситуация может измениться, по мере того как его производство будет дешеветь.

Вездесущий водород

На данный момент цена водорода может разниться примерно от $1,5 до $9 за 1 кг. Самый дешёвый, “серый” водород, получают из метана в сочетании с выбросом СО2. Цена подрастает, если говорить о “голубом” водороде (тоже из газа, но с улавливанием и захоронением углекислого газа), “бирюзовом” (метод пиролиза), “жёлтом” (электролиз на АЭС). Что касается самого дорогого и экологичного “зелёного” водорода, то в ЕС надеются на снижение стоимости электричества от ВИЭ и оборудования для электролиза примерно вдвое в течение 10-летнего переходного периода.

Как считает директор по операционной работе Кластера энергоэффективных технологий фонда “Сколково” Олег Перцовский, лет через 20 получение водорода электролизом с использованием возобновляемой энергетики станет дешевле, чем получение его из метана. К середине века в развитых странах водород может составить конкуренцию импорту традиционных видов топлива, если производить его из воды на месте. Правда, многое будет зависеть от экологической политики государств и углеродного регулирования. В 2019 году Всемирный банк оценил объём мировой торговли водородом всего в $167 миллионов, но лет через 10 он может вырасти на порядки.

Директор инвестиционной компании Creon Capital Флориан Виллерсхаузен (Люксембург) приводит в пример климатически дружелюбный поезд французского производителя Alstrom, работающий на водороде. По мнению Виллерсхаузена, не за горами тот час, когда локомотивы на водородном топливе “отправят своих чадящих дизельных праотцов на запасной путь”. В продвинутых странах Евросоюза, благодаря топливным элементам нового типа, процесс “исчезновения видов” может затронуть автобусы и трамваи. Пилотные проекты с использованием водорода обкатывают также на судах и в авиации.

Есть и другие сферы использования этого ценного газа. Например, в металлургии его можно использовать вместо кокса в качестве восстановителя железа, в химической промышленности и жилищном хозяйстве — в качестве топливного элемента. По прогнозам Bloomberg, к 2050 году 24% мировых потребностей энергии будет покрывать водород. Оптимистичный сценарий развития допускает привлечение за 30 лет $11 трлн инвестиций и достижение уровня $700 млрд по мировым продажам водородно топлива.

Потенциал для декарбонизации

Вывод о перспективах взаимовыгодного сотрудничества России и Евросоюза в сфере водородной энергетики напрашивается как бы сам собой. В частности, в Германии признают, что ей будет не под силу обеспечить свои потребности в водороде самостоятельно: ей придётся импортировать либо электроэнергию для производства “зелёного” водорода, либо исходные продукты. Руководитель исследовательской группы в Институте изучения экологической устойчивости (IASS Potsdam) Райнер Квитцов видит в такой кооперации потенциал для декарбонизации российской промышленности. Россия является главным поставщиком энергоресурсов в ЕС и эти торговые связи служат стабилизирующим фактором в их отношениях.

“Имея большой потенциал для производства энергии из возобновляемых источников, Россия могла бы стать одним из важных поставщиков так называемого “зелёного” водорода, — считает Райнер Квитцов. — Благодаря географической близости к Западной Европе и уже имеющимся газопроводам Россия обладает важным преимуществом по отношению к другим потенциальным странам-поставщикам в том, что касается стоимости поставок”.

Российское правительство утвердило в августе концепцию развития водородной энергетики, согласно которой потенциальные объёмы экспорта водорода из России на мировой рынок в 2050 году могут составить до 50 млн тонн в год (примерная выручка около $150 млрд). В концепции приведён широкий перечень технологий производства водорода, включая паровую конверсию метана, пиролиз углеводородов, производство водорода на базе атомных станций, электролиз воды и т. д. Предусмотрены и меры господдержки, такие как компенсация части затрат, ускоренная амортизация, льготная кредитная ставка и многое другое.

По словам премьер-министра Михаила Мишустина, на первом этапе реализации концепции (ближайшие 3,5 года) будут созданы профильные кластеры, реализованы пилотные проекты по производству и экспорту водорода, по применению водородных энергоносителей на внутреннем рынке. На двух следующих этапах (до 2035 и 2050 годов) планируется перейти к серийному применению водородных технологий в различных секторах экономики и открыть крупные экспортно ориентированные производства.

Вдобавок к энергии ветра и солнца

Как можно видеть, есть хорошие предпосылки для того, чтобы российско-европейское сотрудничество в водородной сфере успешно развивалось, хотя есть и немало подводных камней. Благодаря большим запасам природного газа и развитой атомной энергетике, Россия располагает большими резервами для производства “голубого” и “желтого” водорода. Но на взгляд щепетильных в климатических вопросах немцев, только “зелёный” водород, добытый из воды с использованием возобновляемой энергии, может с полным правом называться экологичным.

Директор “Центра энергоэффективности — XXI век” Игорь Башмаков говорит о необходимости развивать технологии, которые позволят снизить стоимость производства водорода, и создавать инфраструктуру для его транспортировки. По его мнению, пока Россия будет производить дешёвый водород из метана, следовало бы параллельно развивать инфраструктуру. Например, если будут созданы заправки для автомобилей на водородном топливе, то перейти с “голубого” водорода на “зелёный” не составит труда.

Читайте также:  Метки грм ваз 2107 инжектор - Автожурнал MyDucato

“Водородной энергетики” в чистом виде не будет, она будет сочетаться с другими видами топлива, полагает эксперт Фонда национальной энергетической безопасности и Финансового университета при правительстве России Станислав Митрахович. Препятствием выступают узкие технологические горлышки, связанные с проблемами транспортировки водорода и инфраструктуры для его использования. Сжиженный водород всего на 20 градусов теплее, чем абсолютный ноль (-259°С), подходящие для него танкеры ещё находятся на стадии НИОКР. Возможность прокачки водорода по трубам обоих “Северных потоков” ещё не изучена и, вероятно, понадобится их модернизация.

Как бы то ни было, для страны, ориентированной на экспорт энергоресурсов, какой является Россия, ставка на водород в современных условиях совершенно оправданна. Как отмечает директор Creon Capital Флориан Виллерсхаузен, гигантские потребности Евросоюза в электроэнергии, которые невозможно будет покрыть только за счёт энергии ветра и солнца, открывают широкую дорогу для инвестиционных проектов в области водородной энергетики. По мере удовлетворения внутреннего рынка и его потребностей российские нефтегазовые компании могли бы активно участвовать в развитии будущего международного рынка водородного топлива. Это могло бы внести свой вклад в сближение позиций России и ЕС, в том числе и в вопросах энергетики.

Добавьте “Правду.Ру” в свои источники в Яндекс.Новости или News.Google, либо Яндекс.Дзен

Быстрые новости в Telegram-канале Правды.Ру. Не забудьте подписаться, чтоб быть в курсе событий.

Как работает водородный двигатель и какие у него перспективы

С 2018 года в ЕС действует запрет на дизельные автомобили новейшего поколения в населенных пунктах [1]. Это стало поворотным моментом в развитии рынка электрокаров, а также — гибридных и водородных двигателей.

Великобритания еще в 2017-м высказывалась за полный запрет бензиновых авто к 2040 году. Тогда же, если верить исследованию Bloomberg New Energy Finance [2], на электрокары будет приходиться 35% от всех продаж автомобилей. Уже к 2030 году Jaguar и Land Rover планируют довести число электрокаров в своих линейках до 100% [3]. Часть из них тоже работает на водороде.

История развития рынка водородных двигателей

Первый двигатель, работающий на водороде, придумал в 1806 году французский изобретатель Франсуа Исаак де Риваз [4]. Он получал водород при помощи электролиза воды.

Первый патент на водородный двигатель выдали в Великобритании в 1841 году [5]. В 1852 году в Германии построили двигатель внутреннего сгорания (ДВС), который работал на воздушно-водородной смеси. Еще через 11 лет французский изобретатель Этьен Ленуар сконструировал гиппомобиль [6], первые версии которого работали на водороде.

В 1933 году норвежская нефтегазовая и металлургическая компания Norsk Hydro Power переоборудовала [7] один из своих небольших грузовиков для работы на водороде. Химический элемент выделялся за счет риформинга аммиака и поступал в ДВС.

В Ленинграде в период блокады на воздушно-водородной смеси работали около 600 аэростатов. Такое решение предложил военный техник Борис Шепелиц, чтобы решить проблему нехватки бензина. Он же переоборудовал 200 грузовиков ГАЗ-АА для работы на водороде.

Первый транспорт на водороде выпустила в 1959 году американская компания Allis-Chalmers Manufacturing Company — это был трактор [8].

Первым автомобилем на водородных топливных элементах стал Electrovan от General Motors 1966 года. Он был оборудован резервуарами для хранения водорода и мог проехать до 193 км на одном заряде. Однако это был единичный демонстрационный экземпляр, который передвигался только по территории завода.

В 1979-м появился первый автомобиль BMW с водородным двигателем. Толчком к его созданию послужили нефтяные кризисы 1970-х, и по их окончании об идее альтернативных двигателей забыли вплоть до 2000-х годов.

В 2007 году та же BMW выпустила ограниченную серию автомобилей Hydrogen 7, которые могли работать как на бензине, так и на водороде. Но машина была недешевой, при этом 8-килограммового баллона с газом хватало всего на 200-250 км.

Первой серийной моделью автомобиля с водородным двигателем стала Toyota Mirai, выпущенная в 2014 году. Сегодня такие модели есть в линейках многих крупных автопроизводителей: Honda, Hyundai, Audi, BMW, Ford и других.

Как работает водородный двигатель?

На специальных заправках топливный бак заправляют сжатым водородом. Он поступает в топливный элемент, где есть мембрана, которая разделяет собой камеры с анодом и катодом. В первую поступает водород, а во вторую — кислород из воздухозаборника.

Каждый из электродов мембраны покрывают слоем катализатора (чаще всего — платиной), в результате чего водород начинает терять электроны — отрицательно заряженные частицы. В это время через мембрану к катоду проходят протоны — положительно заряженные частицы. Они соединяются с электронами и на выходе образуют водяной пар и электричество.

По сути, это — тот же электромобиль, только с другим аккумулятором. Емкость водородного аккумулятора в десять раз больше емкости литий-ионного. Баллон с 5 кг водорода заправляется около 3 минут, его хватает до 500 км.

Где применяют водородное топливо?

  • В автомобилях с водородными и гибридными двигателями. Такие уже выпускают Toyota, Honda, Hyundai, Audi, BMW, Ford, Nissan, Daimler;
  • В поездах. Первый такой был выпущен в Германии компанией Alstom и ходит по маршруту Букстехуде — Куксхафен;
  • В автобусах: например, в городских низкопольных автобусах марки MAN.
  • В самолетах. Первый беспилотник на водороде выпустила компания Boeing, внутри — водородный двигатель Ford;
  • На водном транспорте. Siemens выпускает подводные лодки на водороде, а в Исландии планируют перевести на водородное топливо все рыболовецкие суда;
  • Во вспомогательном транспорте. Водород используют в электрокарах для гольфа, складских погрузчиках, сервисных автомобилях логистических компаний и аэропортов;
  • В энергетике. Электростанции мощностью от 1 до 5 кВт, работающие на водороде, могут обеспечивать теплом и энергией небольшие города и отдельные здания. Например, после аварии на Фукусиме в 2018 году Япония активнее начала переходить на водородную энергетику [9], планируя перевести на водород 1,4 млн электрогенераторов;
  • В смесях с обычным топливом. Например, с дизельным или газовым — чтобы удешевить производство.
Читайте также:  Ремонт гбц: замена прокладки, клапанов ваз 2108, 2109, 2110, 2112, 2114, 2115

Плюсы водородного двигателя

  • Экологичность при использовании. Водородный транспорт не выбрасывает в атмосферу диоксид углерода;
  • Высокий КПД. У двигателя внутреннего сгорания (ДВС) он составляет около 35%, а у водородного — от 45%. Водородный автомобиль сможет проехать на 1 кг водорода в 2,5-3 раза больше, чем на эквивалентном ему по энергоемкости и объему галлоне (3,8 л) бензина;
  • Бесшумная работа двигателя;
  • Более быстрая заправка — особенно в сравнении с электрокарами;
  • Сокращение зависимости от углеводородов. Водородным двигателям не нужна нефть, запасы которой не бесконечны и к тому же сосредоточены в нескольких странах. Это позволяет нефтяным государствам диктовать цены на рынке, что невыгодно для развитых экономик.

Минусы водородного двигателя

  • Высокая стоимость. Галлон бензина в США стоит около $3,1 [10], а эквивалентный ему 1 кг водорода — $8,6. Водородные батареи содержат платину — один из самых дорогих металлов в мире. Дополнительные меры безопасности также делают двигатель дорогим: в частности, специальные системы хранения и баки из углепластика, чтобы избежать взрыва.
  • Проблемы с инфраструктурой. Для заправки водородом нужны специальные станции, которые стоят дороже, чем обычные.
  • Не самое экологичное производство. До 95% сырья для водородного топлива получают из ископаемых [11]. Кроме того, при создании топлива используют паровой риформинг метана, для которого нужны углеводороды. Так что и здесь возникает зависимость от природных ресурсов.
  • Высокий риск. Для использования в двигателях водород сжимают в 850 раз [12], из-за чего давление газа достигает 700 атмосфер. В сочетании с высокой температурой это повышает риск самовоспламенения.

Водород обладает высокой летучестью, проникает даже в небольшие щели и легко воспламеняется. Если он заполнит собой весь капот и салон автомобиля, малейшая искра вызовет пожар или взрыв. Так, в июне 2019 года утечка водорода привела к взрыву на заправке в Норвегии. Сила ударной волны была сопоставима с землетрясением в радиусе 28 км. После этого случая водородные АЗС в Норвегии запретили

Водород для топлива можно получать разными способами. В зависимости от того, насколько они безвредны, итоговый продукт называют [13] «желтым» или «зеленым». Желтый водород — тот, для которого нужна атомная энергия. Зеленый — тот, для которого используют возобновляемые ресурсы. Именно на этот водород делают ставку международные организации.

Самый безвредный способ — электролиз, то есть, извлечение водорода из воды при помощи электрического тока. Пока что он не такой выгодный, как остальные (например, паровая конверсия метана и природного газа). Но проблему можно решить, если сделать цепочку замкнутой — пускать электричество, которое выделяется в водородных топливных элементах для получения нового водорода.

Водородный транспорт в России

В России в 2014 году появился свой производитель водородных топливных ячеек — AT Energy. Компания специализируется на аккумуляторных системах для дронов, в том числе военных. Именно ее топливные ячейки использовали для беспилотников, которые снимали Олимпиаду-2014 в Сочи.

В 2019 году Россия подписала Парижское соглашение по климату, которое подразумевает постепенный переход стран на экологичные виды топлива.

Чуть позже «Газпром» и «Росатом» подготовили совместную программу развития водородной технологии на десять лет.

Главный фактор, который может обеспечить России преимущество на рынке водорода — это богатые запасы пресной воды [14] за счет внутренних водоемов, тающих ледников Арктики и снегов Сибири. Вблизи последних уже есть добывающая инфраструктура от «Роснефти», «Газпрома» и «Новатэка».

В конце 2020 года власти Санкт-Петербурга анонсировали [15] запуск каршеринга на водородном топливе совместно с Hyundai. В случае успеха проект расширят и на другие крупные города России.

Перспективы технологии

Вокруг водородных двигателей немало противоречивых заявлений. Одни безоговорочно верят в их будущее — например, Арнольд Шварценеггер еще в 2004 году, будучи губернатором Калифорнии, обещал [16], что к 2010 году весь его штат будет покрыт «водородными шоссе». Но этого так и не произошло. В этом отчасти виноват глобальный экономический кризис: автопроизводителям пришлось выживать в тяжелейших финансовых условиях, а подобные технологии требуют больших и долгосрочных вложений.

Другие, напротив, критикуют технологию за ее очевидные недостатки. Так, основатель Tesla Илон Маск назвал водородные двигатели «ошеломляюще тупой технологией» [17], которая по эффективности заметно уступает электрическим аккумуляторам. Отчасти он прав: сегодня водородным автомобилям приходится конкурировать с электрокарами, гибридами, транспортом на сжатом воздухе и жидком азоте. И пока что до лидерства им очень далеко.

С одной стороны, в Европе Toyota Mirai II стоит несколько дешевле, чем Tesla Model S (€64 тыс. против €77 тыс.) [18]. Полная зарядка водородного автомобиля занимает около 3 минут — против 30-75 минут для электрокара. Однако вся разница — в обслуживании: Toyota Mirai вмещает 5 кг водородного топлива [19] по цене $8-9 за кг. Таким образом, полный бак обойдется в $45, и его хватит на 500 км — получаем около $9 за 100 км пробега. Для Tesla Model S те же 100 км обойдутся всего в $3.

Но у водородного топлива есть существенное преимущество перед электрическими аккумуляторами — долговечность. Если аккумулятора в электрокаре хватает на три-пять лет, то водородной топливной ячейки — уже на восемь-десять лет. При этом водородные аккумуляторы лучше приспособлены для сурового климата: не теряют заряд на морозе, как это происходит с электрокарами.

Читайте также:  Почему машина дергается при езде? Причины, по которым машина дергается на холостом ходу, при переключении передач, при торможении и на малых оборотах

Есть еще одна перспективная сфера применения водородного топлива — стационарное резервное питание: ячейки с водородом могут снабжать энергией сотовые вышки и другие небольшие сооружения. Их можно приспособить даже для энергоснабжения небольших автономных пунктов вроде полярных станций. В этом случае можно раз в год наполнять газгольдер, экономя на обслуживании и транспорте.

Основной упрек критиков — дороговизна водородного топлива и логистики. Однако Международное энергетическое агентство прогнозирует, что цена водорода к 2030 году упадет минимум на 30% [20]. Это сделает водородное топливо сопоставимым по цене с другими видами [21].

Если вспомнить, как развивался рынок электрокаров, то его росту способствовали три главных фактора:

  1. Лобби со стороны развитых государств: в США [22], ЕС [23], Японии [24], России [25] и других странах приняты законы в поддержку экологичного транспорта.
  2. Удешевление аккумуляторов: согласно исследованию Bloomberg New Energy Finance, за последние десять лет цены на литий-ионные аккумуляторы упали с $1200 до $137 за кВт·ч.
  3. Развитие инфраструктуры: специальные электрозарядные станции и зарядки в крупных бизнес-центрах, на парковках ТЦ и аэропортов.

Водородные двигатели ждет примерно тот же сценарий. В Toyota видят главные перспективы [26] для водородных двигателей в компактных автомобилях, а также в среднем и премиум-классе. Пока что производство не вышло на тот уровень, чтобы бюджетные модели работали на водороде и оставались рентабельными. Современные водородные машины стоят вдвое дороже обычных [27] и на 20% больше, чем гибридные.

Согласно прогнозу Markets&Markets [28], к 2022 году объем мирового производства водорода вырастет со $115 до $154 млрд. Остается главный вопрос: как быть с инфраструктурой? Чтобы водородные двигатели стали массовыми, нужны сети заправок, трубопроводы для топлива, отлаженные логистические цепочки. Все это пока только зарождается. Но и тут есть позитивные сдвиги: например, канадская Ballard Power по заказу китайского Министерства транспорта запустила пилотный проект, в рамках которого водородное топливо можно будет заливать в обычные АЗС.

Самая легкая лодка в мире: почему водород — это топливо будущего

Удивительные свойства водорода были обнаружены еще в XIX веке. При сжигании килограмма этого вещества производится почти в четыре раза больше энергии, чем при сжигании килограмма угля. Именно тогда люди стали использовать его для отопления и освещения, прежде чем он уступил позиции нефти и природному газу. Одной из причин тому стала очень низкая плотность, из-за которой он занимает больше места, чем эквивалентное количество того же бензина. Водород — это элемент, который есть почти везде; особенно его много в молекулах воды, которые состоят из одного атома кислорода и двух атомов водорода. Однако практически везде во Вселенной он встречается только в виде соединений, и, чтобы получить это вещество в чистом виде, его необходимо выделять. Вице-президент Air Liquide по водородной энергетике Пьер-Этьен Франк рассказал о главных направлениях применения топливных элементов и проблемах, препятствующих использованию водорода в транспорте.

Читайте «Хайтек» в

Вездесущий элемент

В XXI веке поиски источников энергии, альтернативных ископаемому топливу, стали более осмысленными. В их основе лежит не только естественное для каждой экономики стремление обеспечить себе энергетическую независимость от стран, богатых природными ресурсами, но и минимизировать уже очевидный ущерб, наносимый экологии человеком. Так, экологи выяснили , что с 1976 года приземная температура воздуха на планете поднималась в среднем на 0,45 °C каждые 10 лет; причина тому — загрязнение атмосферы. А в России с ее широкомасштабной добычей полезных ископаемых и объемами промышленного производства, по данным последних исследований, потепление происходит примерно в 2,5 раза быстрее. На фоне этих изменений в 2000-х годах в Германии возник термин «энергетический поворот», который означает постепенный отказ от ископаемого топлива и переход на возобновляемую энергию. Ее источниками преимущественно выступают ветер и солнце, которые в силу природных циклов не способны генерировать энергию равномерно и непрерывно. Одно из решений этой проблемы инженеры видят в накоплении излишков энергии, выработанной в ветреные и солнечные периоды, для дальнейшего использования в часы, когда генерация электроэнергии прекращается. Но на текущем этапе развития системы хранения энергии являются слишком дорогостоящими. Другим выходом может стать использование лишней энергии для производства водорода посредством электролиза воды. Таким образом, возобновляемая энергия трансформируется в газ, пригодный для различных нужд.

Водород нужен в очень многих промышленных процессах, а инновационные методы его производства и применения могут стать ключом к декарбонизации сразу нескольких отраслей. Этот газ широко используется в микроэлектронной промышленности при производстве полупроводникового оборудования, дисплеев, светодиодных ламп и солнечных панелей. Эта самая простая из молекул обладает уникальными свойствами: имеет высокую теплопередачу и выступает эффективным восстанавливающим и травильным агентом. Водород также применяется в промышленной химии. Например, его можно сочетать с азотом для производства аммиака — основы для удобрений. Водород является реагентом, входящим в состав текстильных волокон, таких как нейлон и пенополиуретан. Он также есть в составе ряда пластиковых материалов.

Один из наиболее востребованных продуктов стекольной промышленности — плоские экраны для мониторов — по большей части производится с использованием флоат-технологии, когда на слой расплавленного легкоплавкого металла наливают слой расплавленной стекломассы. Для этой процедуры необходим водород высокой чистоты — он образует защитную атмосферу, которая позволяет создавать мониторы особого качества.

Читайте также:  Замена масла в АКПП Ауди q5: полная и частичная, выбор atf

В машиностроении и металлообработке водород используется для создания защитной среды при термической обработке металлов, в которой производятся механические детали или меняются их свойства.

Еще одна отрасль, где водород в последние годы стал абсолютно необходим, — это нефтепереработка. Нефтеперерабатывающие заводы (НПЗ) используют водород для очистки топлива и снижения уровня содержания серы. С ростом международного спроса на дизельное топливо и ужесточением правил в отношении уровня содержания серы спрос на водород со стороны НПЗ увеличился. Само развитие данной отрасли, сопряженное с использованием более тяжелой сырой нефти и глубокой переработкой, повышает потребность в водороде, что заставляет большинство НПЗ беспокоиться о своем водородном балансе в будущем.

Хорошо забытое старое

Как топливо водород стал набирать популярность в конце XIX — начале XX века, когда люди еще только мечтали о покорении воздушного пространства. В 1783 году французский изобретатель и ученый Жак Александр Сезар Шарль изобрел воздушный шар, наполняемый водородом. Но лишь в конце XIX века немецкий граф Фердинанд фон Цеппелин выдвинул идею создания дирижаблей, работающих на водороде, которые вошли в историю как цеппелины. Цеппелин совершил свой первый полет в 1900 году. Регулярные рейсы начались в 1910 году, и к началу Первой мировой войны в августе 1914 года они перевезли 35 тыс. пассажиров без серьезных инцидентов. Во время войны цеппелины использовались немецкими войсками в качестве бомбардировщиков. Однако в 1937 году произошло крушение «Гинденбурга»: 6 мая 1937 года этот цеппелин, совершавший полет из Германии в США, загорелся в воздухе и рухнул на землю. Жертвами катастрофы стали 36 человек. Крушение «Гинденбурга» не было самой крупной подобной аварией, но получило широкий общественный резонанс и стало предвестником конца эпохи дирижаблей. Расследование обстоятельств аварии в то время показало, что причиной пожара стала утечка водорода (позже ученые выяснят, что настоящей причиной возгорания стало воздействие статического электричества с наружной легковоспламеняемой оболочкой дирижабля). Идея транспорта на водороде стала угасать.

Вновь о водороде как об эффективном источнике энергии для транспорта вспомнили в 1970-х годах, когда зависимость экономик целых стран от регулярных поставок нефти достигла предела: в 1973 году арабские страны-члены ОПЕК объявили «нефтяное эмбарго» странам, поддержавшим Израиль в ходе четвертого арабо-израильского конфликта. Возросшие цены на нефть вызвали экономический кризис в промышленных странах. В 1988 году советское конструкторское бюро «Туполев» в качестве эксперимента успешно переоборудовало коммерческий самолет Ту-154: один из трех двигателей самолета стал работать на жидком водороде. А к концу века к «водородной гонке» подключились автоконцерны: в 1994 году компания Daimler-Benz на пресс-конференции в Ульме продемонстрировала широкой публике свой первый автомобиль на водородных топливных элементах — NECAR I.

На суше и на море

И электромобиль, и водородный автомобиль работают на электроэнергии. Но если первый получает ее из внешнего источника — зарядной станции, куда энергия, как правило, поступает с традиционной электростанции, то энергия для второго создается прямо внутри него благодаря реакции водорода с кислородом воздуха в топливном элементе. Там молекулы водорода расщепляются на электроны, которые двигаются по цепи, генерируя электрический ток и избыточное тепло, и протоны, проходящие через электролитическую мембрану. На катоде протоны соединяются с электронами и молекулами кислорода, образуя воду. Таким образом, единственными побочными продуктами автомобиля на топливных элементах являются электричество, избыточные тепло и вода, которые на выходе образуют пар. Кроме того, поскольку топливные элементы не имеют движущихся частей, они работают практически бесшумно. Сегодня автомобили на водородном топливе есть у нескольких крупных производителей. Самая популярная модель — японская Toyota Mirai. Заправка таких автомобилей занимает всего 5 минут, чего хватает на преодоление более 500 км.

Одним из наиболее успешных реализованных проектов транспорта на водороде считается запуск компанией Alstom водородных поездов в Германии в 2018 году. Первые два поезда с водородным двигателем модели Coradia iLint начали курсировать в Нижней Саксонии по 100-километровому маршруту, соединяющему Куксхафен, Бремерхафен, Бремервёрде и Букстехуде. Эти поезда способны развивать скорость до 140 км/час, что сопоставимо с дизельными поездами, которые обычно обслуживают этот маршрут. Однако дизельные поезда производят токсичные выбросы в атмосферу, а единственным отходом водородного поезда является водяной пар.

Еще одна среда, которая страдает от активного использования дизеля, — это гидросфера планеты. В судоходной отрасли сегодня эксплуатируются почти исключительно дизельные двигатели. На океанских судах в качестве топлива используется либо мазут, либо судовое дизельное топливо, а суда внутреннего плавания, например, в пределах ЕС, используют коммерческое дизельное топливо. По данным Агентства по охране окружающей среды США, в 2000 году на большие судовые дизельные двигатели пришлось около 1,6% выбросов оксида азота в США.

Проекты судов на водородном топливе появились еще в 2000-х годах, а в 2017 году на воду было спущено судно Energy Observer. Оно не является полностью водородным судном: Energy Observer функционирует не только благодаря водороду, но и за счет ветра и солнца. На нем установлены ветрогенераторы, а его поверхность покрыта солнечными панелями. Эту систему дополняет электролизер — устройство, выделяющее из воды водород и кислород методом электролиза. Полученный водород хранится в баках, и его используют, когда в силу погодных условий невозможно получить энергию ветра или солнца.

Energy Observer полностью функционирует лишь за счет возобновляемых источников энергии. Пример Energy Observer доказывает, что с помощью водорода можно создать полностью автономную энергетическую систему: водород обладает уникальной способностью регулировать дисбаланс между производством и потребностью в электроэнергии и в случае необходимости восполнять возникший энергодефицит.

Читайте также:  Как производится замена свечей накаливания и чем она вызвана

Мифы и вызовы

Одним из препятствий, мешающих повсеместному распространению водородного топлива, являются мифы , связанные с его использованием. К примеру, опасения по поводу взрывоопасности водорода. Они связаны с широко прогремевшим испытанием водородной бомбы в 1952 году. Водород, используемый в промышленном производстве — это стандартный атом водорода, который извлекается из молекул воды (H 2 О) или природного газа (СН 4 ), используемого для отопления. Это два основных источника водорода. Водород, добываемый таким способом, существенно отличается от других видов водорода, которые имеют отношение к оружию. Термоядерная бомба — мы знаем ее как «водородную бомбу», что не совсем корректно — основана на принципе синтеза атомов дейтерия и трития. Оба элемента являются изотопами водорода, то есть разделяют с ним определенные характеристики, но не являются идентичными водороду. Для военных целей необходимо слияние дейтерия и трития, в результате которого происходит цепная реакция. Водород, используемый в промышленности, не обладает свойствами своих изотопов или реактивными характеристиками, необходимыми для термоядерной реакции.

Термоядерное оружие (водородная бомба) — тип ядерного оружия, разрушительная сила которого основана на использовании энергии реакции ядерного синтеза легких элементов в более тяжелые (например, синтеза одного ядра атома гелия из двух ядер атомов дейтерия), при которой выделяется энергия.

Имея те же поражающие факторы, что и у ядерного оружия, термоядерное оружие имеет намного бо́льшую возможную мощность взрыва (теоретически она ограничена только количеством имеющихся в наличии компонентов).

1 ноября 1952 года на атолле Эниветок (Маршалловы острова) под наименованием «Иви Майк» было проведено первое полномасштабное испытание двухступенчатого устройства с конфигурацией Теллера-Улама. Мощность взрыва составила 10,4 Мт, что в 450 раз превысило мощность бомбы, сброшенной в 1945 году на японский город Нагасаки.

Оппоненты использования водорода в качестве топлива также ссылаются на взрыв двух кислородных баллонов в аккумуляторном отсеке лунного модуля «Аполлона-13». Однако он случился не из-за утечки водородного топлива или проблемы в топливных элементах, а из-за короткого замыкания, возникшего в кабелях, подсоединенных к одному из баллонов. Риск утечки водорода действительно выше в сравнении с традиционным топливом, поскольку его молекулы малы и им легче просочиться через стенки соединения и уплотнения баллона. Но при этом водород крайне летуч, что снижает риск взрыва: он рассеивается в воздухе быстрее, чем природный газ или пары бензина.

Другой миф связан с необходимостью использования редких металлов при переходе на водородное топливо. Современные водородные топливные элементы содержат не больше платины, чем каталитические нейтрализаторы — устройства в выхлопной системе автомобиля, которые устанавливают для снижения токсичности отработанных газов. Но, в отличие от последних, топливные элементы можно перерабатывать. В соответствии с недавними исследованиями, в будущем станет возможно заменить платину на более дешевый графен (кристаллы графита) или даже бактериальные ферменты.

Помимо предрассудков, на пути развития водородного транспорта стоят и реальные вызовы. Как ни странно, самым легкорешаемым из них является ограниченный срок службы топливного элемента. Сейчас его ресурса хватает примерно на 150 тыс. км, но научные лаборатории уже активно работают над его продлением, ведь топливные элементы имеют большой потенциал и вне транспортного сектора. Другой проблемой, напрямую влияющей на распространение водородного транспорта, является его дороговизна — та же Toyota Mirai в последней конфигурации стоит около $60 тыс. По мере увеличения производства цена таких автомобилей будет снижаться, но чтобы стимулировать спрос, необходимо создавать условия для их комфортной эксплуатации — то есть развивать заправочную инфраструктуру. Ускорить этот процесс поможет государственно-частное партнерство, заинтересованное в построении «водородного» общества. Правительство Японии, например, уже разработало дорожную карту, предполагающую установку 320 станций к 2025 году, и заручилось поддержкой консорциума из почти 20 компаний — Japan H 2 Mobility (JHyM). Он взял на себя обязательство разместить 80 станций в течение ближайших четырех лет. Похожая организация существует в Германии (H 2 Mobility Deutschland) и также пользуется поддержкой лидеров страны. На глобальном уровне развитию водородной инфраструктуры способствует Hydrogen Council — объединение 60 глав заинтересованных международных компаний. Будучи одним из крупнейших поставщиков водорода на различные рынки, Air Liquide входит во все три организации, и наши заправочные станции уже стоят у японских и немецких дорог, а также во Франции, Нидерландах, США и ОАЭ.

Проникновение водорода во все секторы экономики способно серьезно повлиять на будущее нашей планеты. Уровень парниковых газов снизится колоссально уже за счет перевода транспорта на водородное топливо, ведь на нем могут работать не только личные автомобили, но и автобусы, поезда, грузовики, вилочные погрузчики и даже самолеты и космические ракеты. Производство водорода с использованием излишков энергии, генерируемой возобновляемыми источниками, позволит устранить один из факторов, ограничивающих развитие альтернативной энергетики — проблему хранения. Более того, это обеспечит человечество достаточным количеством «зеленого» водорода для обогрева и освещения зданий (с помощью топливных элементов и водородных турбин), а также его использования в различных отраслях промышленности.

Вспомните, как легко человечество освоило добычу нефти и газа, выстроив на них всю мировую экономику, невзирая на пагубные последствия. А теперь представьте, какие возможности может открыть топливо, производимое и используемое без выделения вредоносных побочных продуктов. И упоминал ли я, что водород — самый распространенный элемент во Вселенной?

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: