Антикоррозийная – катодная защита авто – Поделки для авто

Катодная защита автомобиля

Несмотря на широкое распространение метода катодной защиты металлических конструкций в серьезных отраслях промышленности (энергетика, трубопроводы, кораблестроение), устройств, предназначенных для легковых автомобилей, в русскоязычном секторе сети представлено мало.

Катодная защита автомобиля от коррозии в разговорах бывалых водителей давно превратилась в нечто таинственное и обросла слухами. У нее есть как яростные приверженцы, так и скептики. Выясним, о чем идет речь.

Суть катодной защиты

Главным врагом автомобиля, ограничивающим срок его службы, становятся вовсе не механические поломки, а общее ржавление металлического корпуса. Процесс коррозии железа, из которого сделана машина, невозможно свести к какой-то единичной химической реакции.

Напыляемая звукоизоляция коррозии

Разрушение металла, превращение его в безобразные рыжие пятна ржавчины, происходит в результате сочетания разнообразных факторов:

  • особенности климата, в котором эксплуатируется автомобиль;
  • химический состав воздуха, водяного пара и даже почв в районе (влияют на свойства дорожной грязи);
  • качество материала кузова, наличие ударов и повреждений, проведенные ремонты, используемые защитные покрытия и десятки иных причин.

В самых общих чертах суть процессов коррозии машины можно объяснить таким образом.

Что такое коррозия железа

Всякий металл по структуре представляет собой кристаллическую решетку из положительно заряженных атомов и общего электронного облака, окружающего их. В пограничном слое электроны, обладающие энергией теплового движения, вылетают из решетки, но тут же притягиваются обратно положительным потенциалом поверхности, которую покинули.

Коррозия кузова автомобиля

Картина меняется, если металлическая поверхность контактирует со средой, способной переносить электроны, – электролитом. В этом случае покинувший кристаллическую решетку электрон продолжает движение во внешней среде и больше не возвращается. Для этого на него должна действовать некая сила – разность потенциалов, которая появляется, если электролит связывает проводимостью два разных металла с различными свойствами. От его величины зависит, какой из двух металлов станет терять электроны, являясь положительным электродом (анодом), а какой – принимать (катодом).

Возможности предотвратить коррозию

Вокруг способов защитить свою машину от ржавчины в водительском сообществе есть много народных мифов. В реальности возможны два пути:

  • Оградить поверхность металла кузова от контакта с электролитами – водой, воздухом.
  • Внешним источником энергии изменить потенциал поверхности так, чтобы железный кузов из анода превратился в катод.

Первая группа методов – это разнообразные защитные антикоррозионные покрытия, грунтовки и лакокраска. Хозяева машин тратят серьезные деньги, но стоит понимать: таким путем коррозию не прекратить. Только затрудняется доступ активного реагента к кузовному железу.

Антикоррозийная обработка автомобиля

Электрохимические технологии защиты можно разделить на две технологии:

  • Используя внешний источник электричества (аккумуляторную батарею авто), с помощью специальной схемы создать избыток положительного потенциала на кузове, чтобы электроны не покидали металл, а притягивались в него. Это – катодная защита автомобиля.
  • Разместить на кузове элементы из более активного металла, чтобы создать гальваническую пару, в которой тот станет анодом, а корпус автомобиля – катодом. Этот метод вообще не нуждается в подключении к батарее и называется протекторной, или анодной, защитой.

Рассмотрим каждый из способов.

Как выбрать анод

В роли внешнего контура можно с успехом применить металлические поверхности гаража, заземляющий контур на стоянке и другие средства.

Металлический гараж

Через провод с разъемом плату прибора катодной защиты подключают к нему и создают необходимую разность потенциалов. Такой способ неоднократно доказал высокую эффективность.

Контур заземления

Если машина паркуется на открытой площадке, внешний контур для гальванической защиты может быть создан по периметру ее стоянки. В землю вбиваются металлические штыри аналогично обычному заземлению и соединяются в единый замкнутый контур проводкой. Автомобиль размещается внутри этого контура и подключается к нему через разъем так же, как в способе с гаражом.

Металлизированный резиновый хвост с эффектом заземления

Такой способ реализует идею о создании необходимого электроположительного потенциала кузова относительно поверхности дороги. Метод хорош тем, что работает не только при стоянке, но и в движении, защищая машину именно тогда, когда она особенно уязвима к влаге и дорожной химии.

Защитные электроды-протекторы

В качестве электродов, создающих защитный потенциал, используют пластины из стали, состав которой близок к металлу самого кузова. Это нужно для случаев, если произойдет поломка прибора, чтобы размещенные пластины сами не стали очагом коррозии, создав новую гальваническую пару. Площадь каждой пластины оптимальна в размере от 4 до 10 см 2 , форма – прямоугольная или овальная.

Как смонтировать защиту

Один отдельный электрод создает вокруг себя область защитного потенциала в радиусе 0,3-0,4 метра. Поэтому на полное оборудование автомобиля средней величины понадобится от 15 до 20 таких пластин.

Электронная антикоррозийная защита авто

Размещают электроды в наиболее уязвимых для атмосферной коррозии местах:

  • на днище машины;
  • в арках передних и задних колес;
  • на полу салона под ковриками;
  • на внутренних частях дверей снизу.

Необходимо исключить возможность контакта соединенных на плюс АКБ пластин электродов с минусом корпуса авто. Для этого их монтируют на эпоксидный клей поверх имеющегося на кузове лакокрасочного или антикоррозионного покрытия.

Читайте также:  Volvo s60 2018-2019 в новом кузове: фото цена и комплектации седана 3-го поколения - Автолюбитель

Какие приборы используются

Несмотря на широкое распространение метода катодной защиты металлических конструкций в серьезных отраслях промышленности (энергетика, трубопроводы, кораблестроение), устройств, предназначенных для легковых автомобилей, в русскоязычном секторе сети представлено мало. Те немногие, что удается найти, сложно проверить по тестам и отзывам, поскольку достаточного набора данных продавцы не приводят. Устройство катодной защиты авто представлено моделями RustStop-5, БОР-1, АКС-3, УЗК-А.

Запатентованный в США и Канаде прибор FINAL COAT действует по принципу импульсного тока и сопровождается данными исследований. Согласно тестам, это устройство показало реальную эффективность защиты стальных поверхностей кузова при разности потенциалов 100-200 мВ более чем на 400%, чем контрольный образец. Останавливает лишь цена прибора, который сейчас можно купить за 25 тысяч рублей.

Как сделать устройство для катодной защиты самому

Если не ставить перед собой цель изготовления системы со сложными блокировками от короткого замыкания, слежением за расходом заряда батареи, светодиодной индикацией, то само устройство можно элементарно изготовить и самому.

Катодная защита кузова (схема)

Простейший вариант включает лишь разгрузочный резистор определенного номинала (500-1000 ом), через который плюсовая клемма аккумулятора соединяется с защитными электродами. Потребляемый ток должен находиться в интервале 1-10 мА. Защитный потенциал теоретически достаточен в размере 0,44 В (величина электроотрицательного потенциала чистого железа). Но с учетом сложного состава стали, наличия дефектов кристаллической структуры и иных действующих факторов принимается в районе 1,0 В.

Отзывы об эффективности катодной защиты

Сообщения пользователей приборов дают разные оценки.

«Прочитав про катодную защиту кузова автомобиля от коррозии своими руками, решил попробовать. Нашел в интернете номиналы радиодеталей, подобрал подходящие пластины для анодов, все подключил как написано. Результат: пользуюсь больше пяти лет, машина у меня не новая, но сквозной ржавчины еще нет».

«Электрохимическая защита досталась вместе с машиной, когда покупал с рук. Кузов действительно держится как нержавейка, зато сильно сгнили сами пластины на днище. Нужно будет разобраться, как и на что их менять».

Другие способы защиты

Кроме катодной защиты авто от коррозии, в народе популярны разные альтернативные методы. Не все они одинаково хороши, но помогают продлить срок службы машины на несколько лет.

Анодная методика

Применяются специально изготовленные особой формы детали из металлов с более высоким электродным потенциалом, чем у железа. В результате при возникновении гальванической пары растворяется именно эта деталь – расходный электрод. Металл же самого кузова практически не страдает. Этот способ – анодная защита авто от коррозии.

Анодная защита авто от коррозии

Чаще всего применяют накладки из цинка или сплавов магния. Многочисленные отзывы водителей, ставивших в колесные ниши куски цинка, подтверждают действенность этого способа защиты на 3-5 лет. Недостаток способа – необходимость следить за протекторными электродами, при необходимости обновляя их.

Оцинковка кузова

Покрытие металла кузова цинком – еще один распространенный прием защитить машину от ржавчины на весь период ее службы (часто на 15-20 лет). Этим путем пошли крупнейшие западные производители, выпуская премиальные марки своих автомобилей с заводской горячей оцинковкой кузовов.

Безусловным лидером в этом направлении является Audi, разработавшая много патентов на тему технологий защитного покрытия. Именно модель Audi 80 – первый серийный образец с такой обработкой, а начиная с 1986 года ее имеют все производимые под этим брендом машины. Другие участники концерна VW Group также используют горячую оцинковку: «Фольксваген», «Шкода», «Порше», «Сеат».

Кроме немецких, настоящую оцинковку кузовов получили некоторые японские модели: «Хонда Аккорд», «Пилот», «Легенд».

Грунтовки и лакокрасочные материалы

Применительно к теме электрохимической защиты, упоминания заслуживают протекторные составы лакокрасочных материалов, содержащие частички цинка. Это фосфатирующие и катафорезные грунты.

Нанесение лакокрасочных материалов

Принцип их действия тот же: создается контакт железа со слоем более активного металла, который и расходуется в гальванических реакциях в первую очередь.

Ламинирование

Метод защиты поверхности кузова от ржавчины и абразивного истирания путем оклейки специальной прочной прозрачной пленкой. Хорошо проведенная обработка практически не видима глазу, выдерживает значительные перепады температур и не боится вибрации.

Жидкое стекло

Создается дополнительный упрочняющий слой покрытия поверх базового лакокрасочного, обладающий повышенной прочностью. Наносится на обезжиренный и промытый кузов машины, который предварительно нагревают горячим воздухом. Полимерная основа материала растекается и после затвердевания полируется. Таким способом удается уберечь заводской слой краски от проникновения сквозь него атмосферной влаги и этим на небольшое время сдержать коррозию.

Керамика жидкое стекло для авто

Полной защиты от ржавчины метод не дает. Защищает в основном внешний вид автомобиля от видимых проявлений, но оставляя без внимания скрытые очаги.

Работа с днищем

Чтобы уберечь днище и колесные арки от попадания электролитов (дорожная грязь, вода с солью), применяются покрытия различными мастиками на битумной, каучуковой и полимерной основе.

Работа с днищем авто

Используются локеры (подкрылки) из полиэтилена. Все эти виды обработки проигрывают по эффективности электрохимической защите кузова автомобиля, но позволяют на время отсрочить сквозную ржавчину.

Читайте также:  Замена и регулировка ступичного подшипника передней и задней ступицы ваз 2107, как правильно поменять, инструкции с фото и видео - МастерАвто

Антикоррозийная – катодная защита авто

Большинству автолюбителей известно, что появление даже небольшой царапины может привести к стремительному распространению ржавчины по кузову. И борьба с этой проблемой заключает в себе массу сложностей. Всевозможные виды покрытий, антикоров, мастик – чем только не пытаются защитить машину автомобилисты.

Вот только для качественной обработки всех мест, наиболее подверженных поражениям ржавчиной, автомобиль иногда приходится разбирать почти полностью. На это дело может уйти масса времени.

Помимо этого, во время эксплуатации автомобиля все покрытия постепенно разрушаются. Вибрация в движении приводит к появлению микротрещин, а удары песчинок и камней появляются сколы на краске. И всё это делает вполне понятным желание каждого автомобилиста найти волшебный прибор, в который придётся вложиться один раз и потом забыть о проблеме ржавчины на кузове навсегда.

Применение прибора в различных сферах

Уже на протяжении долгого времени самые разнообразные объекты защищаются от коррозии катодным методом. К примеру, на судах практикуется установка специальных протекторов, растворение которых в морской воде обеспечивает защищенность всего корпуса судна. А если говорить о подземных коммуникациях – трубы до укладки обрабатываются антикорами, а затем обматываются лентами из специального материала.

На некотором удалении от труб в землю укладывается анод (электрод) – металлическая болванка, на которую накинут «плюс» от постоянного тока. На саму трубу накидывается «минус». Разность потенциалов защищаемого металла и электрода в цепи электролита проходит ток. На аноде высвобождаются электроны (окислительная реакция) и за счет этого прекращается саморастворение катода (1,2)

Принцип катодной защиты

Необходимо, чтобы в процессе катодной поляризации металлу сообщался отрицательный потенциал, делающий термодинамически маловероятным его окисление. Потенциал в 0,1 – 0,2 В даёт железу и его сплавам полную защиту от коррозии.

Любой сдвиг потенциала может отразиться на степени защиты. По плотности защитный ток должен быть в районе от 10 до 30 мА/м 2 . Помимо этого, с течением времени из-за концентрационной поляризации (по кислороду) на металле потенциал смещается дополнительно в минус. Это даёт возможность время от времени отключать прибор (зарядка аккумулятора, ремонт автомобиля и т. д.). (3)

Прибор, защищающий кузов от коррозии включает в себя электронный блок и защитные электроды. На корпусе блока размещается световая индикация процесс работы. Устройство обеспечивает поддержку значения потенциала на влажных участках поверхности на том уровне, который необходим для полного прекращения процессов коррозии.

Это происходит за счет того, что защитные электроды разрушаются.В качестве анодов (защитных электродов) могут использоваться материалы и разрушающиеся (алюминий, нерж. Сталь) и неразрушающиеся. Если говорить о неразрушающихся – это могут быть магнетит, платина, графит, карбоксил. По виду электроды изготавливаются как прямоугольные или круглые пластины с площадью от 4 до 9 см 2 .

Рисунок показывает схему довольно простого устройства для антикоррозийной защиты, которое отлично справится с проблемой. Конечно, самый примитивный вариант подобного устройства может содержать в себе только провода, подключаемые к «плюсу» аккумулятора и защитные электроды. Но в таком случае будет отсутствовать возможность контроля возникновений коротких замыканий электродов и кузова автомобиля, и слежения за работой самого устройства.

Поэтому здесь в цепи делителя напряжения (R1, R2 и R3) встроен светодиод (VD1), ровно светящийся в рабочем режиме. От аккумулятора ток он потребляет в незначительном количестве, всего где-то 2мА. В случае, если происходит замыкание одного из электродов на кузов машины, диод погасает. Тогда вам нужно обнаружить и устранить проблему. Светодиод может немного изменяться в свечении, если влажность кузова повышена – так работает катодная защита. Стоит отметить, что прибор надежен, потому что во время короткого замыкания выхода на кузов даёт ток перегрузки не больше, чем 25-30 мА.

Что необходимо помнить при монтаже и сборке устройства

  • Один электрод способен обеспечить защиту площади, радиус которой равен примерно 0,25-0,35 м.
  • Устанавливать электроды можно только на участки, которые защищены лакокрасочным покрытием.
  • Может использоваться шпаклевка на основе эпоксидного клея или сам клей.
  • Наружная сторона электродов не должна покрываться электроизоляционными покрытиями (краски, клеи, мастики и т. д.).
  • Установка электронного блока осуществляется в любом удобном месте автомобиля, подсоединять его нужно в общую схему электрооборудования.
  • Электронный блок должен постоянно находиться во включенном состоянии, даже если отключено всё электрооборудование автомобиля.

Затрачивание ресурсов батареи прибором не превышает того, что потребляется автомобильными часами. Даже если аккумулятор будет сильно разряжен, работа прибора будет по-прежнему эффективной.

Еще один вид электрической схемы несложного устройства приведен на рис. 2

Здесь содержится делитель напряжения, выполненный с двумя резисторами, сопротивлениекоторыхR1 и R2. Вывод от резистора R1 (верхний на схеме) соединяется с плюсовым выводом аккумулятора. Вывод отR2 (нижний на схеме) соединяется с «минусом» аккумулятора. Такое соединение резисторов на точке Б даёт на металл кузова потенциал V1, определяемый в выражении U = ExR2 (R1 + R2), где Е – это напряжение аккумулятора (12 В).

Необходимо, чтобы потенциал U равнялся потенциалу защитному, во время которого останавливаются коррозийные процессы. Последовательное соединение резисторов обеспечивает течение тока, равного I = E/(R1 + R2). Сила тока (это от 01 до 100 мА)определяется тем условием, что обычная влажность даёт одному аноду возможность надежной защиты около 4-10 дм 2 поверхности. R2 = V/I; R1 = (E/I) – R2.

Читайте также:  Как сделать пеногенератор – Пеногенератор своими руками для бесконтактной автомойки из опрыскивателя жук или спарк, огнетушителя, канистры и газового баллона

В случае необходимости внесения изменений в значения потенциала (защитного) и в силу тока, значения для сопротивлений резисторов можно определить исходя из соотношений, приведённых выше. К точке делителя №1 припаиваются изолированные провода, с противоположного конца которых должны быть припаяны стальные пластины анодов.

Анод – это пластина, сделанная из стали с низким содержанием углерода, размером 2х2 см. В качестве защиты могут использоваться аноды и внешние, это будет описано ниже. Применение прибора заставляет корпус автомобиля брать на себя функцию катода, восстанавливающегося во время эксплуатации из-за окисления анодов. Конструкция может быть произвольной.

Вот так будет выглядеть в собранном виде с использованием заглушки кнопки

Рис. 3. Электроды, установленные в этих точках будут наиболее эффективны:

1 – коробчатые усилители брызговиков, 2 – места крепления подфарников и фар, 3 – нижняя часть передней панели, 4 – полости за щитками усилителями передних крыльев, 5 – внутренние поверхности дверей и порогов, 6, 7 – передние нижние части заднего крыла и арка колеса по cтыку с крылом, 8 – фартуки задней панели.

Антикоррозийная — катодная защита авто

Большинству автолюбителей известно, что появление даже небольшой царапины может привести к стремительному распространению ржавчины по кузову. И борьба с этой проблемой заключает в себе массу сложностей. Всевозможные виды покрытий, антикоров, мастик – чем только не пытаются защитить машину автомобилисты.

Вот только для качественной обработки всех мест, наиболее подверженных поражениям ржавчиной, автомобиль иногда приходится разбирать почти полностью. На это дело может уйти масса времени.

Помимо этого, во время эксплуатации автомобиля все покрытия постепенно разрушаются. Вибрация в движении приводит к появлению микротрещин, а удары песчинок и камней появляются сколы на краске. И всё это делает вполне понятным желание каждого автомобилиста найти волшебный прибор, в который придётся вложиться один раз и потом забыть о проблеме ржавчины на кузове навсегда.

Применение прибора в различных сферах

Уже на протяжении долгого времени самые разнообразные объекты защищаются от коррозии катодным методом. К примеру, на судах практикуется установка специальных протекторов, растворение которых в морской воде обеспечивает защищенность всего корпуса судна. А если говорить о подземных коммуникациях – трубы до укладки обрабатываются антикорами, а затем обматываются лентами из специального материала.

На некотором удалении от труб в землю укладывается анод (электрод) – металлическая болванка, на которую накинут «плюс» от постоянного тока. На саму трубу накидывается «минус». Разность потенциалов защищаемого металла и электрода в цепи электролита проходит ток. На аноде высвобождаются электроны (окислительная реакция) и за счет этого прекращается саморастворение катода (1,2)

Принцип катодной защиты

Необходимо, чтобы в процессе катодной поляризации металлу сообщался отрицательный потенциал, делающий термодинамически маловероятным его окисление. Потенциал в 0,1 – 0,2 В даёт железу и его сплавам полную защиту от коррозии.

Любой сдвиг потенциала может отразиться на степени защиты. По плотности защитный ток должен быть в районе от 10 до 30 мА/м 2 . Помимо этого, с течением времени из-за концентрационной поляризации (по кислороду) на металле потенциал смещается дополнительно в минус. Это даёт возможность время от времени отключать прибор (зарядка аккумулятора, ремонт автомобиля и т. д.). (3)

Прибор, защищающий кузов от коррозии включает в себя электронный блок и защитные электроды. На корпусе блока размещается световая индикация процесс работы. Устройство обеспечивает поддержку значения потенциала на влажных участках поверхности на том уровне, который необходим для полного прекращения процессов коррозии.

Это происходит за счет того, что защитные электроды разрушаются.В качестве анодов (защитных электродов) могут использоваться материалы и разрушающиеся (алюминий, нерж. Сталь) и неразрушающиеся. Если говорить о неразрушающихся – это могут быть магнетит, платина, графит, карбоксил. По виду электроды изготавливаются как прямоугольные или круглые пластины с площадью от 4 до 9 см 2 .

Рисунок показывает схему довольно простого устройства для антикоррозийной защиты, которое отлично справится с проблемой. Конечно, самый примитивный вариант подобного устройства может содержать в себе только провода, подключаемые к «плюсу» аккумулятора и защитные электроды. Но в таком случае будет отсутствовать возможность контроля возникновений коротких замыканий электродов и кузова автомобиля, и слежения за работой самого устройства.

Поэтому здесь в цепи делителя напряжения (R1, R2 и R3) встроен светодиод (VD1), ровно светящийся в рабочем режиме. От аккумулятора ток он потребляет в незначительном количестве, всего где-то 2мА. В случае, если происходит замыкание одного из электродов на кузов машины, диод погасает. Тогда вам нужно обнаружить и устранить проблему. Светодиод может немного изменяться в свечении, если влажность кузова повышена – так работает катодная защита. Стоит отметить, что прибор надежен, потому что во время короткого замыкания выхода на кузов даёт ток перегрузки не больше, чем 25-30 мА.

Читайте также:  Передний и задний бампер ВАЗ 2106: как снять, чем заменить, инструкции с фото и видео

Что необходимо помнить при монтаже и сборке устройства

  • Один электрод способен обеспечить защиту площади, радиус которой равен примерно 0,25-0,35 м.
  • Устанавливать электроды можно только на участки, которые защищены лакокрасочным покрытием.
  • Может использоваться шпаклевка на основе эпоксидного клея или сам клей.
  • Наружная сторона электродов не должна покрываться электроизоляционными покрытиями (краски, клеи, мастики и т. д.).
  • Установка электронного блока осуществляется в любом удобном месте автомобиля, подсоединять его нужно в общую схему электрооборудования.
  • Электронный блок должен постоянно находиться во включенном состоянии, даже если отключено всё электрооборудование автомобиля.

Затрачивание ресурсов батареи прибором не превышает того, что потребляется автомобильными часами. Даже если аккумулятор будет сильно разряжен, работа прибора будет по-прежнему эффективной.

Еще один вид электрической схемы несложного устройства приведен на рис. 2

Здесь содержится делитель напряжения, выполненный с двумя резисторами, сопротивлениекоторыхR1 и R2. Вывод от резистора R1 (верхний на схеме) соединяется с плюсовым выводом аккумулятора. Вывод отR2 (нижний на схеме) соединяется с «минусом» аккумулятора. Такое соединение резисторов на точке Б даёт на металл кузова потенциал V1, определяемый в выражении U = ExR2 (R1 + R2), где Е – это напряжение аккумулятора (12 В).

Необходимо, чтобы потенциал U равнялся потенциалу защитному, во время которого останавливаются коррозийные процессы. Последовательное соединение резисторов обеспечивает течение тока, равного I = E/(R1 + R2). Сила тока (это от 01 до 100 мА)определяется тем условием, что обычная влажность даёт одному аноду возможность надежной защиты около 4-10 дм 2 поверхности. R2 = V/I; R1 = (E/I) – R2.

В случае необходимости внесения изменений в значения потенциала (защитного) и в силу тока, значения для сопротивлений резисторов можно определить исходя из соотношений, приведённых выше. К точке делителя №1 припаиваются изолированные провода, с противоположного конца которых должны быть припаяны стальные пластины анодов.

Анод – это пластина, сделанная из стали с низким содержанием углерода, размером 2х2 см. В качестве защиты могут использоваться аноды и внешние, это будет описано ниже. Применение прибора заставляет корпус автомобиля брать на себя функцию катода, восстанавливающегося во время эксплуатации из-за окисления анодов. Конструкция может быть произвольной.

Вот так будет выглядеть в собранном виде с использованием заглушки кнопки

Рис. 3. Электроды, установленные в этих точках будут наиболее эффективны:

1 — коробчатые усилители брызговиков, 2 — места крепления подфарников и фар, 3 — нижняя часть передней панели, 4 — полости за щитками усилителями передних крыльев, 5 — внутренние поверхности дверей и порогов, 6, 7 — передние нижние части заднего крыла и арка колеса по cтыку с крылом, 8 — фартуки задней панели.

Один комментарий

Познавательно.Видел на иномарках такие устройства,хотел узнать как работает.Вполне по силам повторить самому.

Катодная защита автомобиля от коррозии

Авторизация на сайте

Метод катодной защиты от коррозии уже давно применяется на самых разнообразных объектах. Например, на кораблях устанавливают специальные протекторы, которые, растворяясь в морской воде, обеспечивают защиту корпуса судна. Подземные трубопроводы перед укладкой обрабатывают антикоррозийными составами и обматывают специальной лентой. На определенном расстоянии от трубопровода закапывают анод (электрод) – металлическую болванку, к которой подключают “плюс” источника постоянного тока, а к самой трубе – “минус”. Благодаря разности потенциалов между электродом и защищаемым металлом в цепи образующегося электролита (влага, соль и т.п.) проходит ток. На аноде происходит освобождение электронов – реакция окисления, и саморастворение катода прекращается [1, 2].

При катодной поляризации металлу нужно сообщить такой отрицательный потенциал, при котором его окисление становится термодинамически маловероятным.Для железа и его сплавов полная защита от коррозии достигается при потенциале 0,1. 0,2 В. Дальнейший сдвиг потенциала мало влияет на степень защиты. Плотность защитного тока должна быть в пределах 10. 30 мА/м2.
Кроме того, со временем на металле за счет концентрационной поляризации по кислороду наблюдается дополнительное смещение потенциала в отрицательную сторону, что позволяет периодически выключать устройство (при ремонте автомобиля, зарядке аккумулятора и т.п.)[3].

Устройство защиты от коррозии состоит из электронного блока и защитных электродов. На корпусе электронного блока размещают световую индикацию работы устройства.

Устройство позволяет поддерживать значение потенциала влажных участков поверхности кузова на уровне, необходимом для полной остановки и прекращения коррозийных процессов за счет разрушения защитных электродов.

В качестве защитных электродов (анодов) могут использоваться как разрушающиеся материалы (нержавеющая сталь, алюминий), требующие замены через 4. 5 лет, так и неразрушающиеся. В качестве неразрушающихся электродов можно применять карбоксил, магнетит, графит или платину. Защитные электроды выполняются в виде прямоугольных либо круглых пластин площадью 4. 9 см2.

На рисунке приведена схема простого антикоррозийного устройства, которое может успешно справляться с явлениями коррозии. Конечно, в простейшем виде устройство катодной защиты может состоять из защитных электродов и проводов, подключаемых непосредственно на “плюсовую” клемму аккумулятора. Однако здесь трудно контролировать возможное короткое замыкание электродов с кузовом автомобиля и его работу в целом. Для этого в устройстве в цепь делителя напряжения R1, R2, R3 включен светодиод VD1, который в рабочем режиме светится ровным светом, потребляя незначительный ток от аккумулятора (около 2 мА).
Если вдруг один из защитных электродов замыкается на кузов автомобиля, светодиод VD1 прекращает светиться. В этом случае необходимо найти-и устранить замыкание. При повышенной влажности кузова светодиод VD1 может в небольших пределах изменять свое свечение, что указывает на работу катодной защиты. Кроме того, данное устройство имеет высокую надежность, поскольку дает при коротком замыкании выхода с кузовом ток перегрузки не более 25. 30мА.

Читайте также:  Доработка печки в ваз 2110 своими руками с фото и видео: схема и устройство системы отопления

При установке и монтаже устройства следует помнить, что:

– один защитный электрод защищает площадь с радиусом около 0,25. 0,35 м;
– защитные электроды устанавливаются только на места, защищенные лакокрасочным покрытием;
– использовать можно только эпоксидный клей или шпатлевку на его основе;
– наружную сторону защитных электродов (где нет пайки) нельзя покрывать мастикой, краской, клеем или другим электроизоляционным покрытием.
Электронный блок устанавливается в любом месте автомобиля и присоединяется к общей схеме электрооборудования автомобиля. При этом необходимо, чтобы электронный блок оставался включенным даже при отключенном общем электрооборудовании автомобиля.

В целом устройство потребляет не больше чем часы автомобиля и гарантирует длительную эффективную работу даже при сильно разряженном аккумуляторе.

Еще одна Электрическая схема простейшего устройства приведена на рис. 2

Устройство содержит делитель напряжения, выполненный на двух резисторах сопротивлением R1 и R2 соответственно. Верхний по схеме вывод резистора R1 соединен с положительным выводом аккумулятора, нижний по схеме вывод резистора R2 соединен с отрицательным выводом. При таком соединении резисторов в точке Б относительно метала кузова автомобиля будет потенциал V1, который определяется из выражения
U = Е х R2/(R1 + R2)
где Е -напряжение аккумулятора 12 В.

Потенциал U должен быть равен защитному потенциалу, при котором прекращается процесс коррозии. При последовательном соединении резисторов через них течет ток, равный I = E/(R1 + R2)
Сила тока (01-100 мА) выбирается из условия, что при обычной влажности один анод надежно защищает примерно 4-10 дм2 площади. R2 = V/I; R1 = (E/I) – R2

Если по каким-либо причинам необходимо изменить значения защитного потенциала или силу тока, соответствующие значения сопротивлений резисторов могут быть определены из приведенных соотношений. К точке 1 делителя необходимо припаять длинные провода (в изоляции), к другим концам которых припаять стальные пластины – аноды.

Каждый анод представляет собой пластину из низкоуглеродистой стали прямоугольной формы размерами примерно 2х2 см. Для защиты можно использовать и внешние аноды, о чем будет сказано далее. Предлагаемое устройство превращает корпус автомобиля в катод, который в процессе эксплуатации будет восстанавливаться за счет окисления анодов. Конструкция устройства произвольная.

А вот так вот устройство реализовано в реале, использлована заглушка кнопки.

Рис. 3. Установка электродов в этих точках наиболее эффективна:

1 – коробчатые усилители брызговиков, 2 – места крепления фар и подфарников, 3 – нижняя часть передней панели, 4 – полости за щитками усилителями передних крыльев, 5 – внутренние поверхности дверей и порогов, 6, 7 – передняя нижняя часть заднего крыла и арка колеса по стыку с крылом, 8 – фартук задней панели.

Катодная защита – спасение автомобиля от коррозии

  • Причины появления коррозии
  • Принцип действия
  • Варианты анодов и принцип применения
  • В роли анодов применяются следующие материалы:
  • При монтаже анодов стоит учесть следующие рекомендации:
  • Вывод
  • Причины появления коррозии

Влияние на стойкость кузова имеет и регион, где эксплуатируется автомобиль. Жители прибрежных регионов применяют специальную высокочастотную обработку (такой метод популярен в Японии). В России популярна антикоррозийная обработка или оцинковка кузова. Но есть и другой вариант – катодная (электрохимическая) защита. В чем же ее сущность? Как правильно применяется защита?

Причины появления коррозии

Для защиты машины от ржавчины стоит понимать принцип данного процесса. Простыми словами коррозия – формирование ржавчины. Чтобы разобраться с причинами, стоит вспомнить физику со школьной скамьи.

Каждый проводник выступает в роли передатчика электронов. Если представить проводник визуально, то это какое-то металлическое тело, окруженное облаком многочисленных электронов, покидающих «убежище» под действием энергии тепла. При отсутствии помех эти же электроны приходят обратно к проводнику. Если металлические элемент окунуть в электролит, то атомы металла (со знаком «+») переходят в новый состав. Итог действия – приобретение металлом потенциала, доступного для измерения.

Особо активна коррозия в электролитической жидкости, если проводник имеет меньшую активность. Металлический элемент, обладающий большей активностью, выступает в роли анода, а меньшей – катода. В процессе взаимодействия корродирует анод. Появление ржавчины (коррозия) проходит посредством протекания следующих реакций – восстановления и окисления. При этом восстанавливается катод, а разрушается (покрывается ржавчиной) анод.

Если поместить металл в водную среду или обеспечить контакт с проводником, обладающим меньшей активностью, то происходит процесс коррозии. Ситуация усугубляется, если в воде присутствует соль. Последняя делает электролит проводимым, а это приводит к еще большей скорости окисления. Если сравнивать с автомобилем и дорожными условиями, то зимой транспорт сталкивается с описанными выше проблемами. Металл контактирует с водой и специальным составом, которым покрываются дороги. Опасны для металла и кислотные дожди, которые стали обычным явлением для многих регионов страны.

Читайте также:  Заклинил двигатель: причины

Главный показатель – скорость покрытия ржавчиной. Здесь есть специальный параметр, позволяющий определить стойкость того или иного металла к коррозии. Классическое железо характеризуется скоростью коррозии, равной – 0.03-0.05 мм в год. Это значит, что после пяти лет эксплуатации металл становится тоньше на 0.15-0.25 мм. Если никаких действий не предпринимать, то на кузове может образоваться дырка, на устранение которой пойдет немало средств.

Из рассмотренного выше напрашивается вывод, что для защиты металла от коррозии достаточно превратить его из анода в катод. Автолюбители часто используют простой вариант – они покрывают кузов специальной защитой. Но последняя эффективна только на неповрежденном кузове. Появление трещины или царапины на ЛКП приводит к контакту металла с менее активным проводником. Итог – появление коррозии. Катодная защита отличается большей эффективностью, ведь она меняет роль кузова автомобиля, превращая его из подверженного разрушению анода в стойкий катод.

Принцип действия

При использовании катодной защиты роли распределяются следующим образом:

  • Катод – корпус транспортного средства;
  • Анод – пластинки, металлические конструкции и прочие токопроводящие поверхности (покрытие на дороге в том числе).

Между защищаемым от коррозии металлом и внешней частью анода появляется ток. В роли катализатора выступает воздух, обладающий повышенной влажностью. Анод постепенно окисляется и разрушается. У катода происходит обратный процесс – коррозия останавливается.

Научные разработки в отношении катодной защиты позволяют указать точные данные по разности потенциалов между «сопрягающимися» элементами – «плюсовым» и «минусовым» проводником. Чтобы защитить простое железо или его сплавы от ржавчины, достаточно создать потенциал 0.2 Вольта. Если напряжение уменьшается, то качество защиты остается на прежнем уровне. Что касается плотности защитного тока, то данный параметр равен 20-30 мА на квадратный метр.

Интересен тот факт, что проводники можно располагать вплотную друг с другом или на расстоянии до нескольких метров. Но чем дальше анод и катод друг от друга, тем выше требования к разности потенциалов. При указанных параметрах и большом расстоянии между проводниками тока не будет.

Катодная защита основана не на электрическом токе как таковом, а на разности потенциалов. В этом случае молекулы жидкости при попадании на кузов, выступают в качестве анода, а катодом является металл. Как следствие, окисление кузова останавливается. Из-за отсутствия разности потенциалов электроны высвобождаются с небольшой скоростью. Под действием поляризации потенциал автомобиля (точнее, его кузовной части) смещается в отрицательном направлении.

Главное влияние на эффективность катодной защиты оказывает площадь анода. Чем она больше, тем ярче эффект. В роли катода, как уже упоминалось, выступает кузов машины. Остается выбрать анод, который подключается к сети машины (12 Вольт) через специальное сопротивление. Главное назначение последнего – уменьшить разрядный ток АКБ при контакте анода и катода, вероятного в случае ошибочного монтажа катодной защиты или преждевременного окисления анода.

Если с катодом удалось определиться (это кузов машины), то что использовать в роли анода? Эту функцию берет на себя гараж из металла, контур заземления на стоянке, защитные электроды и так далее.

Варианты анодов и принцип применения

Для понимания сути процесса стоит рассмотреть варианты анода:

Металлический гараж, выступающий в роли анода – доступный и простой способ защиты внешней поверхности кузова от коррозии. При наличии металлического пола в гараже или кусков арматуры возле машины, можно защитить и днище транспортного средства. К примеру, в теплую погоду в гараже из металла появляется парниковый эффект.

Наличие катодной защиты бережет кузов от разрушения. Более того, поверхность металла дополнительно очищается от ржавчины и восстанавливает свой первоначальный вид. Для организации катодной защиты необходимо металлическую основу гаража объединить с «плюсом» АКБ, смонтированного в транспортном средстве. Для выполнения работы потребуется монтажный провод и сопротивление. Роль «плюса» доверяется прикуривателю (но при условии, что в случае отключения зажигания в нем присутствует напряжение).

Заземляющий «хвост», состоящий из резины и металла – надежный метод защиты транспортного средства от коррозии в движении. Негативные условия (мокрое покрытие, дождь, туман и прочие) способствуют появлению разницы потенциалов между транспортным средством (его металлическими элементами) и дорогой. Высокая влажность и мокрая дорога только ускоряют процесс. Но наличие катодной защиты с заземляющим «хвостом» способно остановить коррозию.

Специальный «хвост» монтируется в задней части транспортного средства так, чтобы на него попадала влага. Это дает возможность повысить общие антикоррозийные качества.

Еще одна задача «хвоста» заземления – выполнение роли антистатика. Вы наверняка видели большегрузный транспорт с цепью, которая тянется в хвосте. Главное назначение конструкции – защита от появления искры, которая может привести к воспламенению топлива и взрыву. Встречается мнение, что тянущаяся цепь является не только антистатиком, но и антикоррозийной защитой. Такие выводы не имеют общего с действительностью. Для нормальной работы защиты «хвост» изолируется от металлических элементов автомобиля по постоянному току и «коротится» по переменному. Реализуется это с помощью частотного фильтра или RC-цепи.

Читайте также:  Рейтинг ТОП 5 лучших бортовых компьютеров на ВАЗ
  • Протекторы. Применение в роли анодов протекторов считается эффективным методом защиты. Протекторы представляют собой пластины небольшого размера, которые выполнены из металла и фиксируются на подверженных коррозии деталях кузова. Для автомобилей этого пороги, дно и крылья. Задача протекторов – «переманить» коррозию на себя. Принцип действия такой же, как был описан выше. Главное преимущество – наличие постоянного анода. При этом не имеет значения, движется автомобиль или стоит на месте. Минус в том, что для обеспечения надежной защиты число анодов должно быть не меньше 15. Практика показывает, что процесс монтажа трудоемкий, но способ работает.
  • В роли анодов применяются следующие материалы:

    • разрушающиеся (алюминий, сталь и прочие). Их срок службы в роли защитных проводников составляет 4-6 лет;
    • неразрушающиеся (магнетит, карбоксил и прочие). Преимущество таких материалов – длительный срок службы, который исчисляется десятилетиями.

    Особенность защитных пластин – особое сечение (прямоугольное или круглое) и площадь в 5-10 квадратных сантиметров.

    При монтаже анодов стоит учесть следующие рекомендации:

    • Один электрод способен защитить небольшой участок кузова, имеющий радиус 0.2-0.4 метра;
    • Установка анодов производится на местах, которые покрыты краской;
    • для фиксации защитных анодов стоит применять шпатлевку с эпоксидкой в составе или непосредственно эпоксидный клей. Перед выполнением работ место для установки стоит зачистить;
    • внешняя часть анода (защитного проводника) без пайки не должна ничем покрываться. В частности, требование касается клея, краски, мастики и прочих материалов;
    • протекторы стоит изолировать от катода – кузова автомобиля, создав небольшое расстояние между пластинками. Это необходимо для сохранения хотя бы минимального уровня напряжения. Роль диэлектрика выполняет эпоксидка и ЛКП машины.

    Вывод

    Катодная защита – действенный метод защиты кузова транспортного средства от коррозии. С ее помощью проще защитить днище автомобиля, его пороги (передние и задние), внутренние элементы крыльев (задних и передних). Главное – правильно организовать защиту и следовать рекомендациям по монтажу.

    Электроическая защита от коррозии – кто пользовал?

    Опции темы
    • Подписаться на эту тему…
  • Поиск по теме

    Электроическая защита от коррозии – кто пользовал?

    Собственно сабж.
    вот тут описано в деталях:

    Катодная защита автомобиля от коррозии

    Многим автолюбителям известно, что достаточно появиться небольшой царапине – и ржавчина начинает прямо-таки поглощать автомобиль. И бороться с ней весьма трудно. Какие только хитрости ни придумывают автомобилисты – различные покрытия, мастики, антикоры. Да вот беда: чтобы обработать с должным качеством все наиболее поражаемые места, приходится порой разбирать весь автомобиль. Такая операция занимает немало времени, да и требует постоянного контроля. Кроме того, в процессе эксплуатации происходит постепенное разрушение покрытий. Из-за вибраций при движении появляются микротрещины, под ударами камней или песка краска откалывается. Поэтому вполне понятно желание автомобилистов приобрести чудо-прибор: один раз потратился и навсегда защитил кузов от ржавчины.

    Метод катодной защиты от коррозии уже давно применяется на самых разнообразных объектах. Например, на кораблях устанавливают специальные протекторы, которые, растворяясь в морской воде, обеспечивают защиту корпуса судна. Подземные трубопроводы перед укладкой обрабатывают антикоррозийными составами и обматывают специальной лентой. На определенном расстоянии от трубопровода закапывают анод (электрод) – металлическую болванку, к которой подключают “плюс” источника постоянного тока, а к самой трубе – “минус”. Благодаря разности потенциалов между электродом и защищаемым металлом в цепи образующегося электролита (влага, соль и т.п.) проходит ток. На аноде происходит освобождение электронов – реакция окисления, и саморастворение катода прекращается [1, 2].

    При катодной поляризации металлу нужно сообщить такой отрицательный потенциал, при котором его окисление становится термодинамически маловероятным.Для железа и его сплавов полная защита от коррозии достигается при потенциале 0,1. 0,2 В. Дальнейший сдвиг потенциала мало влияет на степень защиты. Плотность защитного тока должна быть в пределах 10. 30 мА/м2.
    Кроме того, со временем на металле за счет концентрационной поляризации по кислороду наблюдается дополнительное смещение потенциала в отрицательную сторону, что позволяет периодически выключать устройство (при ремонте автомобиля, зарядке аккумулятора и т.п.)[3].

    Устройство защиты от коррозии состоит из электронного блока и защитных электродов. На корпусе электронного блока размещают световую индикацию работы устройства.

    Устройство позволяет поддерживать значение потенциала влажных участков поверхности кузова на уровне, необходимом для полной остановки и прекращения коррозийных процессов за счет разрушения защитных электродов.

    В качестве защитных электродов (анодов) могут использоваться как разрушающиеся материалы (нержавеющая сталь, алюминий), требующие замены через 4. 5 лет, так и неразрушающиеся. В качестве неразрушающихся электродов можно применять карбоксил, магнетит, графит или платину. Защитные электроды выполняются в виде прямоугольных либо круглых пластин площадью 4. 9 см2.

    Катодная защита автомобиля от коррозии

    На рисунке приведена схема простого антикоррозийного устройства, которое может успешно справляться с явлениями коррозии. Конечно, в простейшем виде устройство катодной защиты может состоять из защитных электродов и проводов, подключаемых непосредственно на “плюсовую” клемму аккумулятора. Однако здесь трудно контролировать возможное короткое замыкание электродов с кузовом автомобиля и его работу в целом. Для этого в устройстве в цепь делителя напряжения R1, R2, R3 включен светодиод VD1, который в рабочем режиме светится ровным светом, потребляя незначительный ток от аккумулятора (около 2 мА).
    Если вдруг один из защитных электродов замыкается на кузов автомобиля, светодиод VD1 прекращает светиться. В этом случае необходимо найти-и устранить замыкание. При повышенной влажности кузова светодиод VD1 может в небольших пределах изменять свое свечение, что указывает на работу катодной защиты. Кроме того, данное устройство имеет высокую надежность, поскольку дает при коротком замыкании выхода с кузовом ток перегрузки не более 25. 30мА.
    При установке и монтаже устройства следует помнить, что:
    – один защитный электрод защищает площадь с радиусом около 0,25. 0,35 м;
    – защитные электроды устанавливаются только на места, защищенные лакокрасочным покрытием;
    – использовать можно только эпоксидный клей или шпатлевку на его основе;
    – наружную сторону защитных электродов (где нет пайки) нельзя покрывать мастикой, краской, клеем или другим электроизоляционным покрытием.
    Электронный блок устанавливается в любом месте автомобиля и присоединяется к общей схеме электрооборудования автомобиля. При этом необходимо, чтобы электронный блок оставался включенным даже при отключенном общем электрооборудовании автомобиля.

    Читайте также:  Правильное переключение передач на механике для экономичной поездки

    В целом устройство потребляет не больше чем часы автомобиля и гарантирует длительную эффективную работу даже при сильно разряженном аккумуляторе.

    Еще одна Электрическая схема простейшего устройства приведена на рис. 2

    Катодная защита автомобиля от коррозии

    Устройство содержит делитель напряжения, выполненный на двух резисторах сопротивлением R1 и R2 соответственно. Верхний по схеме вывод резистора R1 соединен с положительным выводом аккумулятора, нижний по схеме вывод резистора R2 соединен с отрицательным выводом. При таком соединении резисторов в точке Б относительно метала кузова автомобиля будет потенциал V1, который определяется из выражения
    U = Е х R2/(R1 + R2)
    где Е — напряжение аккумулятора 12 В.
    Потенциал U должен быть равен защитному потенциалу, при котором прекращается процесс коррозии. При последовательном соединении резисторов через них течет ток, равный I = E/(R1 + R2)
    Сила тока (01-100 мА) выбирается из условия, что при обычной влажности один анод надежно защищает примерно 4-10 дм2 площади. R2 = V/I; R1 = (E/I) – R2

    Если по каким-либо причинам необходимо изменить значения защитного потенциала или силу тока, соответствующие значения сопротивлений резисторов могут быть определены из приведенных соотношений. К точке 1 делителя необходимо припаять длинные провода (в изоляции), к другим концам которых припаять стальные пластины—аноды.

    Каждый анод представляет собой пластину из низкоуглеродистой стали прямоугольной формы размерами примерно 2х2 см. Для защиты можно использовать и внешние аноды, о чем будет сказано далее. Предлагаемое устройство превращает корпус автомобиля в катод, который в процессе эксплуатации будет восстанавливаться за счет окисления анодов. Конструкция устройства — произвольная.

    Катодная защита автомобиля от коррозии

    А вот так вот устройство реализовано в реале, использлована заглушка кнопки

    Катодная защита автомобиля от коррозии

    Р и с. 3. Установка электродов в этих точках наиболее эффективна:1 — коробчатые усилители брызговиков, 2 — места крепления фар и подфарников, 3 — нижняя часть передней панели, 4 — полости за щитками-усилителями передних крыльев, 5 — внутренние поверхности дверей и порогов, 6, 7 — передняя нижняя часть заднего крыла и арка колеса по стыку с крылом, 8 — фартук задней панели.

    Кто использовал такую тему? Если на раму, допустим, поставить, достаточно ли эффективно?

    Как перехитрить ржавчину, используя электрохимические способы защиты?

    Одним из наиболее распространенных и в то же время губительных факторов, воздействующих на автомобиль в процессе эксплуатации, выступает коррозия. Разработано несколько способов защиты кузова от нее, причем встречаются как меры, направленные именно против данного явления, так и комплексные технологии защиты автомобиля, предохраняющие его от различных факторов. В приведенной статье рассмотрена электрохимическая защита кузова.

    Причины образования коррозии

    Так как электрохимический способ защиты автомобиля направлен исключительно против коррозии, следует рассмотреть причины, вызывающие поражение ею кузова. Основными из них являются вода и дорожные реагенты, применяемые в холодный период. В сочетании друг с другом они образуют высококонцентрированный соленый раствор. К тому же осевшая на кузове грязь продолжительное время удерживает влагу в порах, а если она содержит дорожные реагенты, то еще и притягивает молекулы воды и из воздуха.

    Ситуация усугубляется, если лакокрасочное покрытие автомобиля имеет дефекты, даже небольшого размера. В таком случае распространение коррозии будет происходить очень быстро, и даже сохранившиеся защитные покрытия в виде грунта и оцинковки могут не остановить этот процесс. Поэтому важно не только постоянно очищать автомобиль от грязи, но и следить за состоянием его лакокрасочного покрытия. В распространении коррозии также играют роль температурные колебания, а также вибрации.

    Также следует отметить участки автомобиля, наиболее подверженные поражению коррозией. К ним относятся:

    • детали, расположенные ближе всего к дорожному покрытию, то есть пороги, крылья и днище;
    • сварные швы, оставшиеся после ремонта, особенно если он был неграмотно осуществлен. Это объясняется высокотемпературным «ослаблением» металла;
    • кроме того, ржавчина часто поражает различные скрытые плохо вентилируемые полости, где скапливается влага и долго не высыхает.
    Читайте также:  Замена цепи ГРМ на ВАЗ 2106, 2107. Фото, инструкция как поменять цепь ГРМ на ВАЗ 2106, 2107

    Принцип действия электрохимической защиты

    Рассматриваемый способ защиты кузова от ржавчины относят к активным методам. Разница между ними и пассивными способами состоит в том, что первые создают какие-либо защитные меры, не позволяющие вызывающим коррозию факторам воздействовать на автомобиль, в то время как вторые лишь изолируют кузов от воздействия атмосферного воздуха. Данная технология изначально применялась для защиты от ржавчины трубопроводов и металлоконструкций. Электрохимический метод считают одним из наиболее эффективных.

    Данный способ защиты кузова, который также называют катодным, основан на особенностях протекания окислительно-восстановительных реакций. Суть состоит в том, что на защищаемую поверхность накладывают отрицательный заряд.

    Сдвиг потенциала осуществляют с применением внешнего источника постоянного тока или путем соединения с протекторным анодом, состоящим из более электроотрицательного металла, чем защищаемый объект.

    Принцип действия электрохимической защиты автомобиля состоит в том, что между поверхностью кузова и поверхностью окружающих объектов вследствие разности потенциалов между ними по цепи, представленной влажным воздухом, проходит слабый ток. В таких условиях окислению подвергается более активный металл, а другой, наоборот, восстанавливается. Именно поэтому используемые для автомобилей защитные пластины из электроотрицательных металлов называют жертвенными анодами. Однако при чрезмерном сдвиге потенциала в отрицательную сторону возможно выделение водорода, изменение состава приэлектродного слоя и прочие явления, которые приводят к деградации защитного покрытия и возникновению стресс-коррозии защищаемого объекта.

    Рассматриваемая технология для автомобилей предполагает использование в качестве катода (отрицательно заряженного полюса) кузова, а анодами (положительно заряженными полюсами) служат различные окружающие объекты или установленные на автомобиле элементы, проводящие ток, например, металлические сооружения или влажное дорожное покрытие. При этом анод должен состоять из активного металла, такого как магний, цинк, хром, алюминий.

    Во многих источниках приведена разность потенциалов между катодом и анодом. В соответствии с ними, чтобы создать полную защиту от коррозии для железа и его сплавов, необходимо достичь потенциал в 0,1-0,2 В. Большие значения слабо сказываются на степени защиты. При этом плотность защитного тока должна составлять от 10 до 30 мА/м².

    Однако эти данные не совсем верны – в соответствии с законами электрохимии, расстояние между катодом и анодом прямо пропорционально определяет величину разницы потенциалов. Поэтому в каждом конкретном случае необходимо достичь определенного значения разницы потенциалов. К тому же воздух, рассматриваемый при данном процессе в качестве электролита, способен проводить электрический ток, характеризующийся большой разницей потенциалов (примерно кВт), поэтому ток с плотностью 10-30 мА/м² не будет проводиться воздухом. Возможно возникновение лишь «побочного» тока в результате намокания анода.

    Что касается разности потенциалов, наблюдается концентрационная поляризация по кислороду. При этом попавшие на поверхность электродов молекулы воды ориентируются на них таким образом, что происходит освобождение электронов, то есть реакция окисления. На катоде данная реакция, наоборот, прекращается. Вследствие отсутствия электрического тока освобождение электронов происходит медленно, поэтому процесс безопасен и незаметен. Благодаря эффекту поляризации, происходит дополнительное смещение потенциала кузова в отрицательную сторону, что дает возможность периодически выключать устройство защиты от коррозии. Нужно отметить, что площадь анода прямо пропорционально определяет эффективность электрохимической защиты.

    Варианты создания

    В любом случае роль катода будет выполнять кузов автомобиля. Пользователю необходимо выбрать предмет, который будет использован в качестве анода. Выбор осуществляют на основе условий эксплуатации автомобиля:

    • Для автомобилей, находящихся в неподвижном состоянии, на роль катода подойдет расположенный вблизи металлический объект, например, гараж (при условии, что он построен из металла или имеет металлические элементы), контур заземления, который может быть установлен в отсутствии гаража на открытой стоянке.
    • На движущемся автомобиле могут быть использованы такие приспособления, как резиновый металлизированный заземляющийся «хвост», протекторы (защитные электроды), монтируемые на кузов.

    Ввиду отсутствия тока, протекающего между электродами, бортовую сеть автомобиля +12 вольт достаточно подключить к одному или нескольким анодам через добавочный резистор. Последнее устройство служит для ограничения тока разряда аккумулятора в случае замыкания анода на катод. Основными причинами замыкания являются неграмотно осуществленная установка оборудования, повреждение анода или его химическое разложение вследствие окисления. Далее рассмотрены особенности применения перечисленных ранее предметов в качестве анодов.

    Использование гаража в качестве анода считают наиболее простым способом электрохимической защиты кузова стоящего автомобиля. Если помещение имеет металлический пол или напольное покрытие с открытыми участками железной арматуры, то также будет обеспечена и защита днища. В теплый период в металлических гаражах наблюдается парниковый эффект, однако в случае создания электрохимической защиты он не разрушает автомобиль, а наоборот направлен на защиту его кузова от коррозии.

    Создать электрохимическую защиту при наличии металлического гаража весьма просто. Для этого достаточно подключить данный объект к положительному разъему аккумуляторной батареи автомобиля через добавочный резистор и монтажный провод.

    В качестве положительного разъема можно использовать даже прикуриватель при условии наличия в нем напряжения при отключенном замке зажигания (не у всех автомобилей данное приспособление сохраняет работоспособность при отключенном двигателе).

    Читайте также:  Как проверить форсунки бензинового двигателя своими руками

    Контур заземления при создании электрохимической защиты используют в качестве анода по тому же принципу, что рассмотренный выше металлический гараж. Различие состоит в том, что гараж защищает весь кузов автомобиля, в то время как этот способ — лишь его днище. Контур заземления создают путем забивания в грунт по периметру автомобиля четырех металлических стержней длиной не менее 1 м и натягивания между ними проволоки. Подключение контура к автомобилю, как и гаража, осуществляют через добавочный резистор.

    Резиновый металлизированный заземляющий «хвост» является простейшим способом электрохимической защиты движущегося автомобиля от коррозии. Данное приспособление представляет собой резиновую полоску с металлическими элементами. Принцип его функционирования состоит в том, что в условиях высокой влажности между кузовом автомобиля и дорожным покрытием возникает разность потенциалов. Причем чем выше влажность, тем больше эффективность электрохимической защиты, создаваемой рассматриваемым элементом. Заземляющий «хвост» устанавливают в задней части автомобиля таким образом, чтобы на него попадали брызги воды, вылетающие при движении по мокрому дорожному покрытию из под заднего колеса, так как это повышает эффективность электрохимической защиты.

    Достоинство заземляющего хвоста состоит в том, что, помимо функции электрохимической защиты, он избавляет кузов автомобиля от статического напряжения. Это особо актуально для транспорта, перевозящего топливо, так как электростатическая искра, являющаяся результатом накопления статического заряда в процессе движения, опасна для транспортируемого им груза. Поэтому приспособления в виде металлических цепей, волочащихся по дорожному покрытию, встречаются, например, на бензовозах.

    В любом случае необходимо изолировать заземляющий хвост от кузова автомобиля по постоянному току и наоборот «закоротить» по переменному. Это достигают путем использования RC-цепочки, которая представляет собой элементарный частотный фильтр.

    Защита автомобиля от коррозии электрохимическим способом с использованием в качестве анодов защитных электродов рассчитана также на эксплуатацию в движении. Протекторы устанавливают в наиболее уязвимых для коррозии местах кузова, представленных порогами, крыльями, днищем.

    Защитные электроды, как и во всех рассмотренных ранее случаях, функционируют по принципу создания разницы потенциалов. Достоинство рассматриваемого способа состоит в постоянном наличии анодов вне зависимости от того, стоит ли автомобиль или движется. Поэтому данную технологию считают весьма эффективной, однако она наиболее сложна в создании. Это объясняется тем, что для обеспечения высокой эффективности защиты необходимо установить на кузове автомобиля 15-20 протекторов.

    В качестве защитных электродов могут быть использованы элементы из таких материалов, как алюминий, нержавеющая сталь, магнетит, платина, карбоксил, графит. Первые два варианта относят к разрушающимся, то есть состоящие из них защитные электроды требуется менять с интервалом в 4-5 лет, в то время как остальные называют неразрушающимися, так как они характеризуются значительно большей долговечностью. В любом случае протекторы представляют собой пластины круглой или прямоугольной формы площадью 4-10 см².

    В процессе создания такой защиты нужно учитывать некоторые особенности протекторов:

    • радиус защитного действия распространяется на 0,25-0,35 м;
    • электроды необходимо устанавливать лишь на участки, имеющие лакокрасочное покрытие;
    • для закрепления рассматриваемых элементов следует использовать эпоксидный клей или шпатлевку;
    • перед установкой рекомендуется зачистить глянец;
    • наружную сторону протекторов недопустимо покрывать краской, мастикой, клеем и прочими электроизоляционными веществами;
    • так как защитные электроды представляют собой положительно заряженные пластины конденсатора, они должны быть изолированы от отрицательно заряженной поверхности кузова автомобиля.

    Роль диэлектрической прокладки конденсатора будет выполнять лакокрасочное покрытие и клей, расположенные между протекторами и кузовом автомобиля. Также нужно учитывать, что величина расстояния между протекторами прямо пропорционально определяет электрическое поле, поэтому их следует устанавливать на небольшом расстоянии друг от друга, чтобы обеспечить достаточную емкость конденсатора.

    Провода к защитным электродам подводят через проколы в закрывающих отверстия в днище автомобиля резиновых заглушках. Можно установить на автомобиль много протекторов маленького размера или меньшее количество защитных электродов большего размера. В любом случае необходимо использовать данные элементы на участках, наиболее уязвимых по отношению к коррозии, обращенными наружу, так как роль электролита в данном случае выполняет воздух.

    Кузов автомобиля после установки электрохимической защиты такого типа не будет бить током, так как она создает электричество очень небольшой силы. Даже если человек прикоснется к защитному электроду, то не получит удар. Это объясняется тем, что в электрохимической антикоррозийной защите применяется постоянный ток малой силы, создающий слабое электрическое поле. К тому же существует альтернативная теория, согласно которой магнитное поле существует только между поверхностью кузова и местом установки защитных электродов. Поэтому электромагнитное поле, создаваемое электрохимической защитой, более чем в 100 раз слабее электромагнитного поля мобильного телефона.

  • Рейтинг
    ( Пока оценок нет )
    Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: