Гаражный блок питания для ремонтных работ

Мощный гаражный источник питания

Diy Kit

Этот источник работающий от сети переменного тока, предназначен для питания приборов и механизмов электрооборудования автомобиля, вспомогательных инструментов и приспособлений, установленной в нём радиоэлектронной аппаратуры во время проводимых ремонтных или профилактических работ в гаражных условиях. Ценным качеством источника является защищённость от замыкания в цепи нагрузки. От него также можно питать портативную звукоусилительную или приёмопередающую аппаратуру, причём круглосуточно.

Источник вырабатывает стабилизированное постоянное напряжение 13,8 В при нагрузочном токе до 50 А. Увеличение тока нагрузки до предельного значения вызывает уменьшение выходного напряжения не более чем на 0,2 В.

Схема мощного гаражного источника питания

Схема устройства изображена на рисунке. Устройство состоит из сетевого трансформатора Т1, выпрямителя на мощных диодах Шотки VD1—VD3, батареи фильтрующих конденсаторов СЗ—С14, транзисторов VT1, VT2 управляющего узла, коммутирующего элемента на полевых транзисторах VT3, VT4, накопительного дросселя L1 с коммутирующим диодом VD6, стабилизатора выходного напряжения на микросхеме DA2 и оптопаре U2, устройства защиты от замыкания выходной цепи на стабилитроне VD5 и оптопаре U1, сигнальных светодиодов HL1, HL2, индицирующих режим работы источника питания. На диодном мосте VD4, подключённом к обмотке III сетевого трансформатора, и на стабилизаторе DA1 выполнен источник питания узла управления.

При замыкании контактов выключателя SA1 сетевое напряжение поступает на первичную обмотку трансформатора Т1. Пониженное до 24 В напряжение с обмотки II выпрямляет мощный диодный мост VD1—VD3. Применение в нём диодов Шотки позволило почти в два раза снизить мощность, рассеиваемую выпрямителем. Конденсаторы фильтра СЗ—С14 заряжаются до амплитудного значения, т. е. почти до 35 В.
Напряжение 15 В с обмотки III трансформатора выпрямляет диодный мост VD4, а стабилизатор DA1 ограничивает на уровне 12 В.

Стабилизированное напряжение поступает на управляющие транзисторы VT1, VT2. Так как через излучающие диоды оптопар U1 и U2 ток не протекает, оптотранзисторы закрыты и через резисторы R5 и R6 протекает базовый ток транзистора VT1. Поэтому он открывается, а транзистор VT2 остаётся закрытым.

Через VT1 на затворы транзисторов VT3 и VT4 относительно их истоков приходит открывающее напряжение 12 В. Резисторы R7 и R8 устраняют высокочастотное самовозбуждение ступени в моменты переключения. При открывании транзисторов коммутирующего элемента через накопительный дроссель L1 начинает протекать ток, напряжение на конденсаторе фильтра С15 увеличивается. Одновременно увеличивается и напряжение на управляющем входе стабилизатора DA2, задаваемое делителем R9R10.

Как только напряжение на конденсаторе С15 становится равным 13,8 В, напряжение на управляющем входе микросхемы DA2 достигает 2,5 В и он открывается. Через излучающий диод оптопары U2 и светодиод HL2 начинает течь ток, ограничиваемый резистором R11. Включившийся светодиод HL2 зелёного цвета свечения сигнализирует о достижении на выходе блока питания номинального напряжения. В этот момент открывается оптотранзистор оптопары U2 и базовый резистор R6 через малое сопротивление коллектор—эмиттер соединяется с отрицательным выводом источника питания управляющего узла.

В результате транзистор VT1 закрывается, a VT2 открывается и ёмкость затвор-исток транзисторов коммутирующего элемента быстро разряжается через резисторы R7, R8 и открывшийся транзистор VT2. Транзисторы VT3, VT4 при этом закрываются.

Энергия, запасённая в магнитном поле дросселя L1, преобразуется в электрический ток, замыкаемый через нагрузку открывающимся коммутирующим диодом VD6. Необходимость применения двух полевых транзисторов, работающих параллельно, объясняется тем, что ток через дроссель L1 имеет треугольную форму, и при выходном токе 50 А амплитуда тока через дроссель и транзисторы достигает 100 А. Помимо уменьшения протекающего через каждый из этих транзисторов тока, параллельное их соединение позволило в два раза снизить мощность, рассеиваемую переключательным элементом, и облегчить тепловой режим под кожухом прибора.

При номинальной нагрузке блока питания напряжение на его выходе равно 13,8 В, а на стабилитроне VD5 — 12,5 В. Излучающий диод оптопары U1 и светодиод HL1 закрыты. Если произошло замыкание выхода блока, выходное напряжение становится близким к нулю и через светодиод HL1 и излучающий диод оптопары U1 от стабилизатора напряжения R3VD5 протекает ток, ограниченный резистором R4. Светодиод HL2 зелёного цвета свечения гаснет, и включается HL1 красного свечения. Открывается оптопара U1, что приводит к закрыванию переключательного элемента. После устранения причины замыкания выхода блока он автоматически переходит в рабочий режим.

Источник питания имеет значительный запас по мощности, вследствие чего при токовых перегрузках на выходе успевают сработать плавкие предохранители FU2 и FU3 на номинальный ток 30 А, включённые параллельно. При этом будут одновременно светить индикаторы HL1 и HL2.
Таким образом, два светодиода индицируют три состояния блока питания. Свечение HL2 указывает на номинальное выходное напряжение, HL1 — на перегрузку, HL1 и HL2 одновременно — на перегорание предохранителей FU2, FU3. Налаживание блока питания заключается в подборке резистора R10 для установки необходимого выходного напряжения.

Управляющие транзисторы VT1 и VT2 в устройстве могут быть указанных типов с любым буквенным индексом. В случае необходимости каждый из них может быть заменён парой высокочастотных транзисторов, включённых по схеме Дарлингтона: КТ972А заменят КТ315 и КТ6114, а КТ973А — КТ361 и КТ6115 с любыми буквенными индексами. Несколько хуже работают пары КТ315, КТ815 и КТ361, КТ814. Переключательные транзисторы VT3, VT4 выбирают исходя из условий: напряжение сток—исток — не менее 50 В, а постоянный ток стока — не менее 50 А. Этим требованиям удовлетворяют, например, полевые транзисторы IRFZ48N, IRF1010N, IRL3705N, IRL2505.

Читайте также:  Измеритель ESR с трансформаторной развязкой

Сетевой трансформатор Т1 применён промышленный, ОС-1,0-220/24, на вторичное напряжение 24 В, мощностью 1 кВт. Встречаются также аналогичные трансформаторы, маркированные ОС-1,0-220/50-24. Обмотку III наматывают монтажным проводом МГШВ-0,5 в свободном месте окна трансформатора без разборки его магнитопровода. Первоначально укладывают десять витков, измеряют полученное напряжение, после чего рассчитывают необходимое число витков для достижения напряжения 15 В и доматывают необходимые витки. Вместо обмотки III можно применить отдельный сетевой трансформатор с выходным переменным напряжением 12. 17 В мощностью 3. 5 Вт.

Если готовый сетевой мощный трансформатор приобрести не удаётся, его можно изготовить из старого девятиамперного ЛАТРа. В качестве первичной следует использовать имеющуюся обмотку целиком (на 250 В), заизолировав отводы на 127 и 220 В. Очищенную от эмали дорожку на витках обмотки нужно очистить от пыли и покрыть двумя слоями нитролака НЦ221 или НЦ222 (в крайнем случае клея БФ-2).

После высыхания лака обмотку покрывают лентой из лакоткани или хлопчатобумажной матерчатой изоляционной лентой (два слоя). Затем укладывают вторичную обмотку, состоящую из 27 витков изолированного медного провода прямоугольного сечения 5×2 мм (или жгута из проводов меньшей толщины общим сечением не менее 10 мм2). Обмотка III — 19 витков любого монтажного провода.

Диоды VD1—VD3, VD6 — сборки из двух диодов Шотки с общим катодом на обратное напряжение не менее 50 В и выпрямленный ток 60 А. Вместо 60CPQ150 можно использовать 60CMQ050, C60P05Q, FST6050. Два из них — VD1, VD2 с общим катодом — удобно заменить одной с общим анодом FST16050A, S60D50A или SR5050A.

Выпрямительный мост VD4 может быть собран из четырёх диодов с обратным напряжением не менее 30 В и выпрямленным током 0,1 А. Вместо 7812 (DA1; выходное напряжение 12 В) можно использовать стабилизаторы КА7812, 78М12 или отечественные КР142ЕН8Б, КР142ЕН8Д, КР1180ЕН12А, КР1180ЕН12Б. Стабилизатор TL431LPA (DA2) заменим отечественным КР142ЕН19А, но при этом, как показали измерения, пульсации выходного напряжения источника увеличивались с 63 до 80 мВ.

Транзисторные оптопары, кроме указанных на схеме, могут быть 4N25—4N28, TLP331 или отечественные АОТ128А. Светодиоды HL1 и HL2 — любые красного и зелёного цветов свечения. Резисторы — МЯТ и С2-23; оксидные конденсаторы — импортные, а С14, С16 — К73-17. Предохранители FU2, FU3 на 30 А применены автомобильные.

Дроссель L1 — самодельный, изготовлен следующим образом. На гладкую оправку с внешним диаметром 35 мм наматывают несколько слоёв полиэтиленовой плёнки. Поверх неё укладывают виток к витку первый слой обмотки — 9 витков медного изолированного провода прямоугольного сечения 5×2 мм и наматывают пропитанный эпоксидным клеем слой стеклоткани. Её перед пропиткой необходимо прожечь в пламени паяльной лампы или газовой горелки.

Стеклоткань закрепляют нитками, наматывают второй слой обмотки — 8 витков, затем пропитанный эпоксидным клеем второй слой стеклоткани, который снова закрепляют нитками, и наматывают последний слой обмотки — 7 витков. Итоговое число витков обмотки — 24. Для предохранения от расползания витков обмотку стягивают нитками, покрывают снаружи тонким слоем эпоксидного клея и оставляют в тёплом месте до полной его полимеризации.

Всю работу необходимо выполнять в резиновых перчатках.

Через сутки готовую катушку снимают с оправки. Полиэтиленовую плёнку удаляют. Напильником снимают заусенцы и натёки клея.
Для изготовления магнитопровода необходимо обломки различных ферритовых изделий, вплоть до магнитопроводов отклоняющих систем кинескопов, истолочь в ступе и просеять. Самодельная ступа изготовлена из обрезка стальной трубы диаметром около 160 мм, приваренного к обрезку стального листа толщиной 3 мм. Пест представляет собой стальной стержень диаметром 30 мм.

Обломки феррита следует предварительно несколько раз нагреть в духовке до температуры 160 °С и быстро охладить в холодной воде, при этом в феррите образуются микротрещины, существенно облегчающие процесс измельчения. Просеянный через мелкое сито (можно изготовить из капронового чулка) ферритовый порошок замешивают на эпоксидном клее до густоты сметаны. Катушку ставят вертикально на лист органического стекла (к нему не приклеивается эпоксидная смола), зазоры между листом и катушкой замазывают автогерметиком, и полость внутри катушки заполняют полученной массой. После заливки в массу необходимо заложить головки одного-двух латунных винтов М4, которые в дальнейшем послужат для монтажа дросселя на шасси питания.

Дроссель, изготовленный по описанной технологии, получился весьма “тихим” и практически не нагревается во время работы.
Конструкция источника питания может быть во многом произвольной. Диодные сборки VD1—VD3 установлены на общем теплоотводе с полезной площадью 600 см2, транзисторы VT3, VT4 и диод VD6 — на втором, 800 см2. Эксплуатация показала, что теплоотводы практически не нагреваются и поэтому их размеры могут быть существенно уменьшены.

Устройство собрано навесным монтажом на отрезках технологических монтажных плат. На одной из них размерами 50×30 мм — детали источника питания узла управления, оптопары и транзисторы узла. Плата на стойках закреплена на теплоотводе транзисторов коммутирующего элемента.

Стабилизатор выходного напряжения и элементы узла защиты от перегрузок размещены на второй плате размерами 30×20 мм. Она закреплена на шасси вблизи выходных предохранителей.

Читайте также:  USB флешка или убийца компьютеров своими руками

Монтаж сильноточной части источника следует выполнять отрезками провода сечением 8. 10 мм2. Так как монтажный провод такого сечения найти затруднительно, можно изготовить его самостоятельно из экранирующей оплётки коаксиального кабеля РК-75. Пучок отрезков оплётки необходимой длины, снятых с кабеля, протягивают в термоусадочную полимерную трубку диаметром 8 мм. После прогревания трубки горячим воздухом из фена провод используют для монтажа.

В экспериментах по увеличению выходной мощности описанного источника питания мостовой мощный выпрямитель был собран на диодах В320-2, в качестве коммутирующего (VD6) применялся диод ДЧ171-320, число транзисторов коммутирующего элемента увеличено до пяти, причём сопротивление резисторов в цепи их затвора увеличено до 22 Ом. Сетевым трансформатором служил сварочный, а параллельно конденсатору С16 был включён ещё один диод ДЧ 171-320 катодом к плюсу, анодом — к минусу. Предохранители FU2, FU3 заменены одним самодельным на ток около 150 А.

В таком исполнении источник уверенно вращал стартёром коленчатый вал двигателя автомобиля “Волга”.

Оборудование гаража. Находки, ошибки, идеи. Электричество

Ну что рассказать про электричество? С электричеством жить хорошо. Еще лучше жить, если его не выключают никогда. Увы, несбыточные мечты. То какой-то козел на ночь козла небывалой мощности в сеть включит, то просто где-то что-то дождями зальёт. Следовательно, надо иметь в гараже резервное питание хотя бы для того, что бы в кромешной тьме дверь найти и что бы охранная система не выключалась. Вот про резервное питание я и расскажу, потому как про выключатели и розетки и без меня всё знают лучше любого академика. Еще одна веская причина иметь в гараже 12 вольт – это питать двенадцативольтовый инструмент типа шинного компрессора или миниатюрных дрелей. На форуме forumhouse.ru в разделе «Автономные источники электроэнергии» есть немеряно крутые ребята с бензогенераторами и солнечными батареями. Почитал, подумал: «Оно мне надо?». Мне всего-то пяток ампер на компрессор да что бы охранка не вырубалась. Значит, нужен аккумулятор с периодической подзарядкой. Понижающий трансформатор на толстом железе я исключил сразу. Двадцать первый век на дворе, какой трансформатор, вон, списанных компьютерных блоков питания валяется гора. Насчет горы я немножечко приврал, но почти каждый из нас апгрейдил свой компьютер и блок питания найти не проблема. И напряжение стабильное, и защита от коротких замыканий есть, и, самое главное, у блоков стандарта ATX есть управляющий вход PS_ON. Подали на PS_ON землю — блок выключился, подали + 5 вольт – включился. Всё хорошо, но есть один маленький недостаток – все компьютерные блоки питания выдают ровно 12 вольт. Если мы собрались от него дрель питать, то годится, а если надо свинцовый аккумулятор заряжать, то 12 вольт мало. Для подзарядки надо поднять напряжение хотя бы до 14.5 вольт. А вот тут нас может ждать засада. Если ваш блок сделан на старой микросхеме TL494 и ее клонах, то поднять напряжение не сложно. Если же вам не повезло и ваш блок сделан на микросхемах нового поколения, то без камлания и танцев с бубнами не обойтись. Слишком уж много там всяческих защит и от перенапряжения в том числе. Впрочем, при некотором терпении и эту проблему можно решить. Вот вам несколько ссылок по переделке блоков питания и сами решайте, стоит ли вам ввязываться в это. http://www.qrz.ru/schemes/contribute/power/ua4nx/ и еще http://forum.cxem.net/index.php?showtopic=36540 Ну, допустим, вы переделали блок питания на 14.8 вольт и успешно заряжаете свинцовый стартовый аккумулятор от автомобиля. Ну, зарядили вы его. А дальше-то что? Так и оставим на постоянной подзарядке? Нежелательно. Практика показывает, что свинцовые аккумуляторы, стоящие на постоянной зарядке в бесперебойниках, долго там не живут. Не буду вдаваться в подробности, лучше я отошлю вас для изучения катионов и анионов к книге Хрусталева «Аккумуляторы». Она в Интернете есть, желающие да найдут. Еще есть «Ликбез по кислотным аккумуляторам» на сайте forum.fonarevka.ru Кому вдаваться в теорию недосуг, можно сходить вот по этой ссылке на сайт Радиокота. http://radiokot.ru/circuit/power/charger/28/ Схему, названую автором «Качели», я взял оттуда. Вот она немножко переделанная. Идея простая — двухуровневый компаратор смотрит напряжение на батарее. Если оно меньше 11.9 вольт, перекидывает RS-триггер на DA3, DA4 и по шине PS_ON включает зарядку. Если напряжение больше 13.8 вольт – выключает. Хотя двухуровневый компаратор с гистерезисом можно реализовать проще, но тогда у меня эти детали просто лежали в столе, я и не стал ничего изобретать. Немножко изменил кое-что, в частности уменьшил количество термокомпенсирующих диодов до трех и поставил микросхему 561ПУ4 для преобразования уровня. Сейчас бы сделал уже по-другому, но «работает-не трогай». Я и не трогаю. Позже засунул это в красивый ящик с индикаторами и светодиодами, стрелки показывают, лампочки мигают, душа радуется, Новый Год, да и только. Кроме морального удовольствия есть и польза – удобные разъемы, что хочу то и включаю. От дежурного питания компьютерного блока вывел проводочки к USB – разъему, так что можно теперь и телефон заряжать. И еще там справа на фотографии написано «Вентиляция», так к это к резервному питанию не имеет отношения, просто географически там расположено. Место пустое было, я и поставил небольшой трансформатор и переключатель напряжения для питания вытяжного вентилятора. Когда надо, включаю вентилятор на полную мощность, когда не надо – на половинную. Пара слов о питании охранной системы. Сам основной блок охраны может питаться от 6 до 12 вольт. Внутри стоит резервный литиевый аккумулятор, но толку от него в холодном гараже при температуре минус пятнадцать градусов нет. Поэтому я его сразу же отключил. К блоку еще придавались разные датчики и все с батарейным питанием. (Кстати, батарейки на холоде долго не живут). Когда я разложил это на столе и посмотрел на батарейный зоопарк каждой твари по паре от «Кроны» до дисковых ртутных батареек, от 4.5 до 12 вольт, сразу же решил привести это все к одному знаменателю, то есть к девяти вольтам. Поставил стабилизатор 7809 и развел проводами 9 вольт всем желающим. Стабилизатор мне заодно и защиту от короткого замыкания обеспечил. На схеме у меня еще фильтр противопомеховый по девяти вольтам нарисован. Он там недаром нарисован. Сначала датчики были на батарейках и оно работало. Потом развел 9 вольт по датчикам простыми проводами без фильтров. Посмотрел, что всё моргает и как надо срабатывает и радостный пошел домой. Не успел дойти до дома, как сигналка мне звонит и нежным голосом на чиста английском сообщает о задымлении. Возвращаюсь – дыма нет, гараж на месте. И так много раз. Долго искал причину ложных срабатываний. Сначала ферритовые колечки навесил по проводам на каждый датчик. Не помогает. Потом добавил конденсаторы. Не помогает. Долго мучился, а оказалось лампы дневного света выдавали помеху в 44 килогерца и какая-то гармоника попадала в рабочий диапазон сигналки. Заземлил корпуса светильников, поставил фильтры на их сетевые провода и с тех пор живу счастливо. Сидя на диване могу поинтересоваться какая температура в гараже или что-нибудь эдакое включить. Правда, что включить, еще не придумал и исполнительное реле на 10 ампер в сигналке пока пустует без дела. Пара слов об аккумуляторах. Просто я априори исхожу из предположения, что мы все нормальные люди и не пойдем покупать себе серебряно-цинковый аккумулятор космического исполнения для питания дрельки. А автомобильные аккумуляторы, отслужившие свое, в любом гараже найдутся, а то и несколько. Но в старом аккумуляторе не мешало бы емкость померять. Как? С измерением емкости аккумулятора, увы, большой разнобой. Связано это с разными методиками определения емкости. Есть советские методики измерения по Гостам, есть японские, европейские, есть вообще без методики, это вам могут продемонстрировать в любом аккумуляторном магазине. Один и тот же аккумулятор, измеренный по-разному, покажет разные результаты. А вот, например, Российский Морской Регистр для получения разрешения на применение требует мерять емкость только таким током разряда, при котором он будет работать в реальной аппаратуре. Тут я с Морским Регистром полностью согласен и поэтому сделал себе измеритель емкости аккумуляторов на все случаи жизни. Идею, изумительную по своей простоте, я взял отсюда: www.radioradar.net/radiofan/measuring_technics/measuring_capacity_rechargeable_batteries.html . Стоит компаратор, который при достижении минимально разрешенного напряжения на аккумуляторе отключает нагрузку. А на выходе подключены обыкновенные механические часы на батарейках, которые при отключении нагрузки останавливаются. Перемножаем ток разряда на время, получаем емкость в амперчасах. На транзисторе VT5 и мощных резисторах R22-R24 я сделал регулятор тока разряда. Если взять резистор R25 многооборотный, то ток разряда можно установить от нескольких миллиампер до 10 ампер. Только когда будете измерять емкость, не забудьте сделать поправку на температуру хотя бы вот по этому графику. Продолжение следует.

Читайте также:  Магнитола-планшет в машину: выбор устройства и способы установки

Универсальный блок питания своими руками

Очень давно в гараже пылился компьютерный блок питания и на досуге решил я его для чего нибудь приспособить. Поскольку у компьютерного блока питания имеется три выходных напряжения 3.3В, 5В и 12В решено было сделать универсальный блок для питания различных автомобильных гаджетов. Например для питания автомобильного компрессора нужен мощный 12 вольтовый источник питания, а для зарядки смартфона достаточно пяти вольт.

Сначала надо проверить работоспособность блока питания. Если в в разъеме, который подключается к материнской плате соединить перемычкой зеленый провод с любым черным, блок будет включаться без компьютера. А в случае короткого замыкания будет срабатывать защита о КЗ. То есть все базовые функции блока питания останутся без изменений.

Как запустить блок питания без компьютера

После очистки печатной платы от пыли надо удалить все лишние провода и обязательно соединить зеленый провод на землю GND. Обычно выводы на печатной плате промаркированы, а все провода разноцветные. При отсутствии маркировки черный провод GND (земля), желтый +12В, красный +5В, оранжевый +3.3В.

Как запустить блок питания без компьютера

Чтобы подключать автомобильный компрессор и другие автомобильные гаджеты, я подключил к двенадцати вольтовой линии гнездо прикуривателя от автотазика ВАЗ 2106. Для зарядки мобильных гаджетов, подключил к пяти вольтовой линии три USB — порта спаянных вместе, конечно USB лучше позаимствовать от старой материнской платы.

Печатная плата компьютерного блока питания

На передней крышке блока питания со стороны вентилятора на место удаленного гнезда для сетевого кабеля идеально стали три USB — порта, гнездо прикуривателя поместилось в разработанное круглым напильником отверстие для проводов. Сетевой провод припаял непосредственно к печатной плате через микро выключатель. На верхней крышке блока питания к разъемам «Banana» подвел +3.3В, +5В, +12В и GND. Теперь к ним можно подключать различные потребители: лампочки, моторчики, электронные самоделки, все, что угодно.

Универсальный блок питания своими руками

Прикуриватель к стати рабочий, только я не нашел ему применение. Просто закрываю им отверстие, чтобы туда никто не заполз.

Универсальный блок питания своими руками

Мобильные гаджеты заряжаются без проблем. Если у вас много смартфонов поставьте побольше USB — портов и у вас получится настоящая зарядная станция. Питания хватит на всех.

Читайте также:  Как переделать «Крону» на аккумулятор в мультиметре

Зарядное устройство для смартфона из компьютерного блока питания своими руками

Подкачать колесо на авто в гараже без запуска двигателя, теперь не проблема.

Подключение автомобильного компрессора к компьютерному блоку питания

Друзья, если у вас есть другие идеи по применению компьютерного блока питания, обязательно напишите в комментариях.

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как сделать универсальный блок питания своими руками.

Как правильно подключить гаражный трансформатор – практические советы

Щиток

Своими руками

Большинству автовладельцев известно, зачем необходим трансформатор гаражный. Помещение для хранения транспортного средства не может функционировать без электричества. Это не только освещение помещения, смотровой ямы, но и возможность пользоваться электроинструментами, необходимыми для самостоятельного ремонта авто.

К электропроводке в гараже предъявляются особые требования по соблюдению правил пожарной безопасности. Это связано с тем, что в боксах хранятся бензин, газовые баллоны, масло. Некоторые автовладельцы самостоятельно производят мелкие ремонтные работы, для которых используют легко воспламеняющиеся материалы: краску, эмаль, лак, растворители. Рассмотрим схему электропроводки в гараже.

Состав электрощитового набора

Аппарат предназначен для безопасного регулирования системы распределения электроэнергии. Он имеет вид ящика с дверцей. В состав обязательно входят:

  • Сертифицированный прибор учета электроэнергии. Должен иметь отметку о прохождении поверки в аккредитованной метрологической организации.
  • Электронный аппарат защиты – УЗО. Предохраняет владельца гаража и электроприборы от утечки тока.
  • Трансформатор, предназначенный для того, чтобы понижать напряжение.
  • Автоматытипа ПАР или однофазные пакетники. В случае короткого замыкания устройства прерывают подачу тока.
  • Ящик, предназначенный для сборки щитка.

Перечисленные составляющие позволяют собрать гаражный электрический щиток для подключения силового кабеля с входным напряжением в 220 В. Все монтажные работы по подводке трехфазного напряжения и установке электрических точек делают исключительно специалисты, имеющие допуск к электросетям до 1000 В.

Согласно установленным нормам устройства электропроводки и освещения, в подвалах и ямах для осмотра авто питание осветительных приборов не должно превышать 36 В. Чтобы понизить напряжение следует предусмотреть подключение трансформатора для гаража. Для установки осветительных приборов в яме понадобится наличие клеммника, подсоединенного к выводу контура, имеющего соответствующее напряжение. Отдельная клемма должна подключаться к шине заземления.

Простейший электрощиток

Аппарат необходим для установки учетного устройства и элементов защиты. В гараже важно контролировать расход электроэнергии. Современный счетчик не только ведет учет потребления, но и повышает уровень безопасности.

Перед покупкой следует уточнить, какая разновидность устройств лучше подойдет для гаража. Преимущество отдается электромеханическим контроллерам под однофазное напряжение с максимальным параметром по току до 50 А. В паспорте должен стоять штамп изготовителя, дата поверки. На приборе обязательно наличие пломбы со сведениями о дате тестирования. Поставщик электроэнергии тоже поставит свою пломбу.

Порядок подключения приборов внутри коробки

Схема подключения понижающего трансформатора в гараже выглядит следующем образом:

  • Трехжильный силовой кабель подводится от уличной сети через сквозное отверстие заходит во внутрь щитка.
  • Для защиты входного кабеля применяется гофрированная пластиковая трубка или металлорукав. Целесообразно не сверлить отверстие в боковой стенке гаражного бокса, а войти в щиток через заднюю стенку прибора.
  • Пространство щитка заполняется устройством для учета потребления электроэнергии, пакетниками, и УЗО путем крепления к монтажным планкам. Дополнительно крепятся пакетники под штепсельные розетки и осветительные приборы, трансформатор питания вытяжки для подвала и светильников.
  • Используя клеммники подключаем щиток, согласно электрической схеме и подводим внешние нагрузки, в частности сварочный пост и блок розеток с Imax до 25 А. Остальные розетки надо запитать от автоматов, рассчитанных на 16 А.

Обозначьте каждый кабель разноцветной ПВХ-трубкой или изолентой. Этот прием позволит вам не запутаться в дальнейшем.

Особенности работы системы защиты

Защита, примененная в данном случае, представлена двумя приборами. Сначала подключен автомат для разрыва сети при КЗ, затем – УЗО. При внешнем сходстве, приводящем к непониманию надобности установки двух идентичных приборов, данные устройства абсолютно разные по назначению. В действительности схема УЗО достаточно сложна, а само устройство представляет собой аппарат, предназначенный для прерывания подачи напряжения в случае, если ток утечки достигает 0,005 А.

Известны ситуации, когда при нарушенной изоляции человек получал удар током, дотронувшись до электрического прибора. Это может произойти, если он стоит на увлажненной поверхности. Нарушение изоляции происходит при намачивании проводки конденсатом дождевой воды, проникающей в помещение через кровлю, или когда на ПХВ изоляции возникли микротрещины.

Воздействие на человека силы тока в 50 мА причинит серьезный ущерб его здоровью, а в 100 мА длительностью 1-2 сек. опасно для жизни, в большинстве случаев вызывает остановку сердца.

Как уже отмечалось, УЗО должно срабатывать на 0,005 А, но рассчитан на возможность отключать сеть при КЗ.

Читайте также:  Повышающий преобразователь или как зажечь светодиодную лампу от 2 батареек

Практические советы

Для удобства проведения работ по монтажу электрического гаражного оборудования, перед вводом силового кабеля в щиток прикручивают отсечной рубильник. Такие требования выдвигают электрики гаражного кооператива. Это надежно защищает внешние осветительные приборы от короткого замыкания, упрощает работу с прибором учета потребления электрического тока. Многие автовладельцы перестраховываются и оборудуют гараж двумя и более автоматами.

Розетки и светильники в помещении подсоединяются на отдельные пакетники. Одна группа подразумевает подключение нагрузки до 25 А, другая – до 16 А. Для подключения светильников достаточно автоматов на 5 А. Целесообразно для каждого источника света на электрощитке поставить свой автомат.

К электрощитку необходимо подвести полноценную шину заземления не полагаясь на так называемое «зануление». Это поможет повысить безопасность эксплуатации особо нежной аппаратуры, в частности, зарядного устройства для аккумулятора и других электронных приборов. Используя медный штырь диаметров не менее 8 мм, либо медную шину шириной 10 мм и толщиной 2 мм, вкопанную в землю на глубину не менее 1 м, подсоединяем заземляющий контур к щитку.

С установкой прибора редко возникают проблемы. Корпус крепится при помощи дюбелей к стенке гаражного бокса. Электрощитки размещают у входа, справа или слева от створок ворот на высоте приблизительно 1,4 м. Необходимо предусмотреть свободный подход к аппарату, чтобы он был доступным. Не следует ставить рядом с коробкой крупногабаритные предметы, размещать ящики.

3 способа освещения гаража без электричества.

гаражное освещение без электричества

Гараж для многих мужчин является не только помещением для крытой стоянки машины, но и полноценным рабочим местом.

Автолюбители ежедневно проводят в нем многие часы своей жизни, причем не только для ремонтных работ. Окна в таких местах не предусмотрены, поэтому полноценное освещение здесь выходит на первый план.

Однако в этом и кроется главная проблема. Подключить свой гараж к электросетям для большинства представляется неразрешимой проблемой.

аккумуляторное освещение гаража

Возникает либо масса препонов с документами, либо элементарно поблизости этих самых электросетей попросту нет. Но не стоит расстраиваться, ведь существует несколько простых способов осветить свою гаражную постройку, даже не имея под боком линий электропередач.

светодиодной освещение в гараже от аккумулятора

В первую очередь следует определиться со следующими моментами:

  • какие светильники будут применяться
  • какие лампочки будут в этих светильниках
  • какой интенсивности освещение вам необходимо

Во-первых, светильники должны быть экономными. Ведь у вас не будет рядом ЛЭП от которой можно спокойно взять несколько киловатт. Поэтому лучшим вариантом будут маломощные светодиодные модели или лампочки напряжением 12 вольт.

Даже при таком напряжении питания, они вполне способны выдавать полноценный световой поток ничем не хуже ламп накаливания 220В. Освещение от них будет яркое и равномерное.

52

При этом, расход энергии от автономного источника питания сведется к минимуму. Запитать их можно от аккумуляторов минимальной мощности. Не обязательно от автомобильных, подойдут даже б/ушные компьютерные ИБП.

Лампочки разной мощности под обычный патрон Е27 на 12В можно заказать у китайцев отсюда.

освещение светодиодными лентами

Еще в качестве подсветки можно применить светодиодную ленту. Если ее наклеить по периметру помещения, или лентами по несколько полос в центре, то получится общее равномерное освещение.

прожектор с лед лентами на 12в

Также кусочки такой ленты можно вклеить в старый прожектор, взяв из под него только корпус. Благодаря отражателю, освещение будет более чем ярким, а потребление минимальным.

освещение смотровой ямы автономным освещением лед ленты

Короткими отрезками ленты удобно организовывать локальную подсветку рабочего места или смотровой ямы.

111_5630

Только не забывайте про влажность. Из-за нее, для ям нужно покупать не простую ленту с защитой IP20, а модели с повышенным классом влагозащиты.

волшебный ящик для авто

То же самое относится и к погребу. Вообще использование в таких местах освещения U=12В является единственно правильным решением. Если это будет не лента, а светильник, то его тоже нужно выбирать с влагозащитой. Подробнее

Когда вы определились с источниками света, далее требуется сделать выбор, от чего же они будут получать питание.

Сразу оговоримся, что не будем всерьез рассматривать такие экзотичные виды как солнечные панели, ветрогенераторы или филиппинский фонарь.

монтаж солнечной панели для гаража

Хотя панели и ветряки уже и не являются особой редкостью в наших магазинах, но мало кто рискнет монтировать солнечную батарею на крыше гаража вдали от своего дома.

Фактор воровства и вандализма здесь никак нельзя игнорировать. Тем более, подобные источники имеют кучу недостатков:

Блок питания для шуруповерта: 5 вариантов продления жизни прибора

Главное преимущество аккумуляторных шуруповертов — мобильность, позволяющая не зависеть от сети. Такие широкие возможности для эксплуатации стали причиной их популярности, однако за эту кажущуюся практичность хозяевам спустя несколько лет приходится расплачиваться. Причина — относительно быстрый выход батареи из строя, особенно если инструмент используется владельцами постоянно. Покупка нового аккумулятора не слишком привлекательный вариант из-за его высокой цены, поэтому многие приходят к логичному решению — создают полноценный блок питания для шуруповерта самостоятельно. В этом случае в жертву приносят возможность работать в любом труднодоступном месте, зато появляется шанс использовать электрическую «отвертку» на полную мощность.

Читайте также:  Паяльник на аккумуляторе своими руками

Нужна ли переделка?

Блок питания для шуруповерта: 5 вариантов продления жизни прибора

Переделывать шуруповерт или нет? Перед началом работы необходимо оценить достоинства и недостатки данного решения. Если говорить о первых, то в результате хозяин добьется:

  • исчезновения проблем с внезапно разрядившимся инструментом;
  • отсутствия зависимости от низкой температуры, ведь при таких условиях аккумуляторы разряжаются очень быстро;
  • получения стабильно крутящегося момента;
  • значительной экономии, так как покупка новой, довольно дорогой батареи не потребуется.

Кроме того, это единственный остающийся вариант, если модель уже снята с производства, когда инструмент срочно необходим, а ждать прибытия нового аккумулятора времени нет. Если сам шуруповерт работает без нареканий, то противопоказаний к его переделке нет. Единственное, чего он лишится, это мобильность, но этот минус все же не так существенен, с ним можно справиться.

Важна ли мобильность?

Блок питания для шуруповерта: 5 вариантов продления жизни прибора

После того как аккумуляторная батарея становится неспособной держать заряд, шуруповерт превращается в абсолютно бесполезный инструмент. Покупка нового зарядного устройства нецелесообразна, так как его цена нередко составляет до 50% стоимости новой модели. Поэтому мысль о переделке инструмента под сеть — совершенно оправданное решение.

Есть возможность восстановить характеристики аккумулятора, однако этот вариант все-таки полумера, потому что в дальнейшем ситуация повторится. Однако перед тем как выбрать решение, необходимо обдумать, что делать с мобильностью инструмента. Так ли она нужна? Есть 2 варианта потенциальной модификации шуруповерта:

  1. Инструмент с внешним блоком питания. В этом случае делают отдельное устройство. Это не так страшно, потому что даже громоздкую конструкцию можно расположить в непосредственной близости от розетки. Однако с ограничением, связанным с длиной кабеля БП и сетевого шнура, придется смириться.
  2. Шуруповерт с БП, вмонтированным на место аккумулятора. Такой способ модификации даст возможность избежать сборки габаритной конструкции, значительно ограничивающей применение инструмента. Но в этом случае проблему доступа тоже может создать длина сетевого кабеля. Зато использовать в таком качестве можно компактные устройства. Ими смогут стать покупные или имеющиеся блоки питания, если они подходят по характеристикам.

Блок питания для шуруповерта: 5 вариантов продления жизни прибора

Способы «возрождения» шуруповерта сильно отличаются. Тем не менее, каждый из этих вариантов находит сторонников, так как отвечает разным потребностям хозяев аккумуляторных инструментов, чья эксплуатация внезапно стала невозможной.

Возможные источники питания

Чтобы любой шуруповерт мог функционировать от сети, ему необходимо обеспечить преобразование напряжения: инструмент требует всего 12, 16 либо 18 вольт. Все источники питания делятся на 2 большие группы: они могут быть импульсными либо трансформаторными.

Импульсные системы

Блок питания для шуруповерта: 5 вариантов продления жизни прибора

В этих блоках питания входное напряжение сначала выпрямляется, затем преобразуется в высокочастотные импульсы. Их подают через трансформатор либо через обычные резисторы. Второй способ дает возможность получить малогабаритную конструкцию, так как в схеме отсутствует массивный силовой трансформатор.

Этот блок питания для шуруповерта обычно имеет довольно высокий КПД, достигающий 98%. Плюсом решения является защита от короткого замыкания, безопасность, которую гарантирует блокировка без нагрузки. Минусы у импульсных блоков есть. Это более низкая мощность, если сравнивать это значение с трансформаторным вариантом. Если нижний предел нагрузки минимален, то такой блок питания не сможет работать. Еще один недостаток — более сложный ремонт в случае выхода импульсного БП из строя.

Трансформаторный блок

Блок питания для шуруповерта: 5 вариантов продления жизни прибора

Это классическое устройство. В линейный источник питания входит понижающий трансформатор и выпрямитель, превращающий переменный ток в постоянный. Последний элемент бывает двух видов — однополупериодный, состоящий из одного диода, либо двухполупериодный, в его составе диодный мост, собранный из 4 электронных приборов.

В схему трансформаторного блока может входить конденсатор, стабилизатор, высокочастотный фильтр и защита от короткого замыкания. Достоинства устройства: простота, надежность, ремонтопригодность, отсутствие помех, а также очень дорогих элементов. Минусы — большие габариты и такой же вес, низкий КПД. Так как часть напряжения забирает стабилизатор, выходное значение обязано быть выше того, что требуется для работы шуруповерта. Например, для инструмента с питанием 12 В нужен БП, имеющий выходное напряжение от 12 до 14 вольт.

Что потребуется для модернизации?

Блок питания для шуруповерта: 5 вариантов продления жизни прибора

В необходимый набор материалов и инструментов может войти:

  • изолента;
  • кабель (многожильный) и провода (для перемычек);
  • короб для БП (старый аккумулятор, покупное готовое устройство либо самодельная конструкция);
  • кусачки;
  • мультиметр;
  • отвертки;
  • пассатижи;
  • паяльник, припой, кислота;
  • строительный нож.

Перед тем как начать делать блок питания для шуруповерта, необходимо учесть размеры устройства: нужен такой корпус, чтобы собранная конструкция в него поместилась.

Блок питания для шуруповерта

Блок питания для шуруповерта: 5 вариантов продления жизни прибора

Чтобы инструмент смог работать от сети, потребуется блок, который выдает на выходе от 12 до 18 (14, 16) вольт. В этом случае ориентируются на модель шуруповерта. Сетевое зарядное устройство можно сделать из имеющегося корпуса аккумулятора. В этом случае сначала оценивают его габариты, чтобы понять, поместится ли зарядка внутри. Небольшие источники питания чаще помещают в корпус шуруповерта.

  1. Сначала разбирают аккумулятор, чтобы можно было вынуть все внутренности. Если корпус был склеен, то для этого пользуются ножом, которым вскрывают шов.
  2. Определяют силу тока и напряжение. Так как первый параметр часто не указывают, результат находят самостоятельно — делят мощность на напряжение (ватты на вольты).
  3. Припаивают электропровод к контактам зарядного прибора: латунные поверхности перед операцией обязательно обрабатывают кислотой.
  4. Соблюдая полярность, обратные концы провода соединяют с выходом батареи. В корпусе аккумулятора делают отверстие для кабеля.
  5. Провод фиксируют изолентой. На другом конце его должна быть вилка для включения в сеть.
Читайте также:  Зарядное Устройство для любого шуруповерта и не только

Есть несколько вариантов получения блока питания. Самый простой выход — покупка готового устройства. Если планируют изготовить самодельный БП, то в данном случае схема — первое, в чем появляется необходимость. Чтобы избежать ошибок, нужно точно соблюдать последовательность соединения всех элементов, а также составить список необходимых мини-электроприборов.

Переделка «китайца» под шуруповерт

Блок питания для шуруповерта: 5 вариантов продления жизни прибора

Эта самый простой способ получить необходимый источник, так как китайские приборы доступны почти повсеместно, к тому же недороги. Эти блоки питания рассчитаны на большее выходное напряжение — на 24 вольта. Поэтому первая задача мастера — понижение выходного напряжения до значений, необходимых инструменту (12-18 В).

Чтобы достичь цели, производят замену резисторов: родной R10 убирают, а в схему вставляют тот, который можно настраивать. Такая работа состоит из нескольких этапов:

  1. Сначала выпаивают постоянный резистор, имеющий перманентное сопротивление 2320 Ом.
  2. Затем вставляют настраиваемый резистор, на котором заранее выставляют значение 2300 Ом. Если этого не сделать, конструкция работать откажется.
  3. На блок подают электричество, чтобы определить значения выходных параметров. На измерительном приборе выставляют диапазон постоянного напряжения.
  4. Регулировкой сопротивления добиваются оптимального напряжения (12, 14, 16 или 18 вольт) и силы тока, не превышающей 9 ампер. Иначе преобразованный блок питания для шуруповерта из-за больших нагрузок вскоре выйдет из строя.

Модифицированную конструкцию крепят на место старого аккумулятора. Все токопроводящие элементы изолируют. Для вентиляции просверливают дополнительные отверстия, корпус закрывают. Последний этап — проверка работы шуруповерта.

Почти аналогичным образом можно переделать практически любой покупной блок питания. В этом случае помимо замены резистора может потребоваться другое преобразование — встраивание в схему дополнительных диодов.

Блок питания из адаптера для ноутбука

Блок питания для шуруповерта: 5 вариантов продления жизни прибора

Источником питания для инструмента сможет стать исправный зарядник для ноутбука. В этом случае мастера ждет минимальная переделка. Для нее подойдет любое устройство, предназначенное для эксплуатации с напряжением 12-19 В. Показатели выходного тока должны быть максимально близкими к требуемым.

  1. Подготавливают входной шнур от адаптера. Кусачками удаляют разъем, а концы провода зачищают от изоляции.
  2. Разбирают корпус шуруповерта, затем проводники, освобожденные от изоляции, припаивают к клеммам инструмента.

Все соединения изолируют, провод выводят наружу. Корпус собирают, потом проверяют шуруповерт на работоспособность. В этом случае работа не обещает никаких сложностей, поэтому с ней справится практически любой.

Блок питания шуруповерта из компьютерного БП

Блок питания для шуруповерта: 5 вариантов продления жизни прибора

Для преобразования лучше всего подходят приборы АТ-типа. Их мощности (350 Вт) и выходного напряжения (примерно 12-14 В) вполне хватает для бесперебойной работы инструмента. Еще один плюс — все технические характеристики, указанные на корпусе. Это устройство можно приобрести в магазине, либо использовать то, что прилагалось к старому компьютеру. К плюсам этого кандидата относится защита от перегрузок, кулер и тумблер включения, к минусам — габариты.

  1. Первым делом разбирают компьютерный блок, затем от платы отсоединяют зеленый проводник, отвечающий за включение.
  2. Отделяют все провода за исключением черного и желтого. Эти провода припаивают к кабелю, другой конец которого подключают к шуруповерту.

После изоляции блок собирают, следя за тем, чтобы шнур, находящийся внутри располагался без перекручивания. Если говорить о недостатках, то минус всего один: максимально возможное напряжение составляет 14 В, поэтому использование этого способа ограничивают характеристики шуруповерта.

Более современные компьютерные блоки питания (АТХ) не подходят для этой цели, так как они уже требуют серьезных переделок. Возможность включения у них организована по-другому — специальной схемой, расположенной на материнской плате компьютера. Такие кардинальные изменения рядовому пользователю не под силу.

Зарядное устройство автомобиля

Блок питания для шуруповерта: 5 вариантов продления жизни прибора

Это еще один из популярных вариантов для превращения аккумуляторного шуруповерта в электрический. В этом случае работа происходит почти аналогично преображению компьютерного блока, однако есть несколько нюансов. Главное отличие — возможность регулировки силы тока и напряжения, что делает зарядное устройство для автомобильного аккумулятора фаворитом среди кандидатов.

  1. Приобретают два многожильных кабеля. Они должны быть одинакового сечения, но для удобства лучше найти провода, имеющие разные цвета обмотки.
  2. С одной стороны их на 3 см зачищают от изоляции, с другой — присоединяют зажимы «крокодилы».
  3. Концы, освобожденные от изоляции, загибают, делая на них подобие крючков. Их присоединяют (припаивают) к клеммам, которыми шуруповерт крепился к аккумуляторной батарее.

Все соединения тщательно изолируют. Сверлят отверстия для проводов, затем их выводят наружу. Крокодилами шуруповерт соединяют с зарядным устройством, строго соблюдая полярность. Такой простой способ позволяет получить блок питания, подходящий ко всем моделям инструмента из-за легкой регулировки параметров.

Трансформаторные устройства

Блок питания для шуруповерта: 5 вариантов продления жизни прибора

Это еще один потенциальный блок питания для шуруповерта. Такие источники на трансформаторах до сих пор не потеряли своей актуальности. Причины — простота сборки и надежность устройств. Самые большие недостатки таких конструкций — большой вес, а также значительные габариты. Однако эти минусы не так важны, если устройство становится отдельным блоком, который изготавливают для стационарного использования.

Читайте также:  Принцип работы металлоискателей и их простые схемы.
Составные части конструкции

Так как эти самодельные БП получили широкое распространение, на их особенностях надо остановиться подробнее. В состав блока питания входят следующие элементы:

  • силовой трансформатор;
  • выпрямитель;
  • стабилизатор напряжения;
  • фильтр питания.

Силовой трансформатор занимает самую большую, тяжелую и габаритную, часть устройства. Его задача — преобразование высокого входного напряжения в низкое, рассчитанное на подключаемую нагрузку.

Выпрямитель необходим для преобразования напряжения — из переменного в постоянное. Самыми эффективными устройствами являются те мостовые схемы выпрямления, которые состоят из 4 диодов, либо такие, что представляют собой монолитный выпрямительный мост. Работа фильтра питания — сглаживание пульсации напряжения после выпрямителя.

Этого набора теоретически хватает на то, чтобы гарантировать работу шуруповерта. Однако из-за скачков напряжения, его просадки вследствие увеличения нагрузки возможна нестабильная работа инструмента. Самый худший вариант — выход его из строя. Чтобы избежать такого сценария, необходим стабилизатор напряжения.

Следующая схема блока питания со стабилизатором проверена, требует минимума деталей и доступна тем, кто знаком с обращением с измерительными приборами и паяльником:

Блок питания для шуруповерта: 5 вариантов продления жизни прибора

В этом случае есть возможность внести некоторые коррективы. Например, использовать транзисторы типа КТ807 и КТ819, но с любой буквой. Емкость конденсатора можно увеличить до 1000 или 2000 микрофарад (мкФ).

Необходимые условия

Главное требование — подбор трансформатора с нужным уровнем выходного напряжения. Идеал — значение немного выше того, которое требуется для работы шуруповерта. Причина — часть напряжения, которое будет оставаться на стабилизаторе. Разница между выпрямленным и стабилизированным значением должна быть в несколько вольт. Слишком низкое напряжение снизит выходное, излишек приведет к нагреванию ключевого резистора. Последний элемент обязательно крепят на радиатор охлаждения.

Необходимо обратить внимание на то, что постоянное напряжение после выпрямителя и фильтра будет в 1,4 раза превышать входное переменное. Поэтому блоку питания, предназначенному для инструмента на 12 В, нужен трансформатор, имеющий выходное напряжение переменного тока, равное 12-14 В.

Цены на различные блоки питания для шуруповерта можно узнать тут:

Самодельный блок питания для шуруповерта даст шанс значительно продлить жизнь инструмента, который, несмотря на отказ батареи, остается полностью пригодным для эксплуатации. Один из вариантов решения насущной проблемы можно увидеть в следующем видеоролике:

Импульсные блоки питания: ремонт своими руками за 7 шагов

Все современные электрические приборы, использующие цифровые технологии, питаются от встроенных блоков, работающих в импульсном режиме.

Они снабжаются защитами, имеют качественный монтаж, но из-за скачков напряжения в сети или ошибок человека все же выходят из строя: тогда дорогой бытовой помощник перестает работать.

Чтобы вы могли с минимальными потерями выйти из этой ситуации, я подробно объясняю все про импульсные блоки питания, ремонт своими руками их неисправностей.

Вначале предлагаю немного отойти от темы, чтобы вспомнить подсобный справочный материал. Если он вам не нужен, то сразу переходите к вопросам ремонта.

Импульсные блоки питания — как работают: краткий обзор схем

Структурная схема импульсного блока питания поясняется мнемоническими символами формы напряжения над каждым его составным блоком, а связи взаимодействия обозначены стрелками.

Структурная схема импульсного блока питания

Принципиальную схему удобно представлять таким видом.

Схема импульсного блока питания

Монтажная плата одного из устройств с расположением деталей показана на фотографии ниже с моими комментариями.

Импульсный блок питания

Естественно, что это только частный случай, который, скорее всего не совпадет с вашим ИБП. Здесь я преследую простую цель — напомнить принципы взаимодействия составных частей блока.

Если вам необходимо более подробно ознакомиться с этими вопросами, то читайте специально написанную статью.

Правила безопасности с электрическим током: как исключить риски и защититься от удара током при ремонте ИБП

На всех существующих схемах импульсных блоков питания рядом с первичными цепями 220 вольт расположены вторичные — выходного напряжения. Их все необходимо измерить и оценить.

Правила безопасности с электрическим током требуют не допускать необученных людей к работам под напряжением. Поэтому обязательно ознакомьтесь с ними заранее.

Я же заострю ваше внимание только на трех вопросах:

  1. Работайте под напряжением только одной рукой: вторую засуньте в карман и не доставайте — сразу снизите риск попадания под действие электрического тока.
  2. Накопительные конденсаторы длительно хранят запасенную энергию даже при отключенном напряжении, требуют осторожного обращения.
  3. Подключайте импульсный блок питания для проверок только через разделительный трансформатор.

Электрическое сопротивление человеческого тела очень низкое: наш организм состоит из жидкостей. Если работать под напряжением двумя руками, то существует большая вероятность создать путь для прохождения тока короткого замыкания через свое тело.

А ведь несколько десятков миллиампер уже могут вызвать фибрилляцию сердца.

Фибрилляция сердца

Мгновенный разряд конденсатора тоже способен причинить большой вред организму. Не советую испытывать судьбу: проверять на себе работу электрошокера.

Накопленный емкостной заряд следует предварительно снимать. Причем делать это не простой закороткой его выводов пинцетом или перемычкой, а резистивным сопротивлением в десятки килоом. Иначе могут возникнуть большие токи, которые элементарно повредят исправный конденсатор.

Разделительный трансформатор отделяет подключенный к нему потребитель от цепей питающей подстанции. Его применение исключает стекание тока через тело человека по контуру земли.

Читайте также:  Цифровой пробник на микросхеме К155ЛА8

Система заземления TN-C

Величина тока короткого замыкания во вторичной цепи 220 разделительного трансформатора ограничивается мощностью, которую может передавать его магнитопровод.

Разделительный трансформатор

Эта схема подключения допускает касание одной рукой (не двумя) любого места вторичной обмотки трансформатора или подключенного к ней источника бесперебойного питания.

Подключать ИБП к вторичной цепи разделительного трансформатора рекомендую через лампу накаливания.

Ее же с мощностью 60-100 ватт допустимо использовать в качестве токоограничивающей нагрузки при ремонте блока без разделительного трансформатора. Она уменьшит аварийный ток, может спасти транзистор от выгорания.

Как отремонтировать импульсный блок питания своими руками: важные советы для начинающих

Профессиональный электрик всегда начинает работу с подготовки рабочего места, инструмента и оценки рисков, которые необходимо предотвратить.

Следует хорошо представлять, что ремонтировать импульсный блок питания своими руками — значит работать под напряжением в действующих цепях.

Подготовительные работы: где найти схему импульсного блока питания и какие нужны измерительные приборы

Сейчас производители электротехнического оборудования хранят в тайне свои профессиональные секреты: схемы ИБП в свободном доступе нет. Мы же собрались делать ремонт своими руками, а не в специализированном сервисе.

Поступаем следующим образом:

  1. Вскрываем корпус и осматриваем электронную плату.
  2. Находим мощный транзистор (выходной ключ) и микросхему (ШИМ-контроллер). Иногда они могут быть объединены общим корпусом.
  3. Записываем маркировку и по ней ищем в справочниках или через интернет полное описание (data sheet).
  4. Изучаем по найденной документации выводы микросхемы, способы ее подключения и сравниваем полученные сведения с реальной конструкцией.

На малогабаритных микросхемах полная маркировка не всегда помещается. Тогда производители делают кодовое обозначение из нескольких букв и цифр. По нему сложнее искать информацию, придется упорнее потрудиться.

Технологию поверхностного монтажа печатных плат и способы маркировки деталей хорошо объясняет в своем видеоролике Влад ЩЧ. Рекомендую посмотреть.

Без измерительного электрического инструмента отремонтировать ИБП вряд ли получится. Можно обойтись старыми стрелочными приборами — тестерами, как мой Ц4324.

Советский тестер

Они позволяют измерять большинство электрических параметров с достаточным для ремонта классом точности, но требуют повышенного внимания и выполнения дополнительных вычислений.

Сейчас намного удобнее использовать для замеров цифровой мультиметр.

Устройство мультиметра

Все правила обращения с ним для новичков я очень подробно объяснил в специально опубликованной статье. Надеюсь, что она будет вам полезна.

Большую помощь в поиске неисправностей окажет осциллограф. Он позволяет просмотреть осциллограммы напряжений практически каждого узла ИБП.

Частота напряжения

По их виду и величинам довольно просто оценивать работоспособность каждого электронного элемента в составе схемы. Для снятия замеров подойдет любая модель: старая аналоговая или современная цифровая.

Но, если осциллографа нет, то отчаиваться не стоит. В подавляющем большинстве случаев можно обойтись цифровым мультиметром или стрелочным тестером.

Алгоритм ремонта импульсного блока питания: полная инструкция из 7 последовательных шагов

Неисправности внутри ИБП можно разделить на две категории:

  1. Явное выгорание с обугливанием деталей, дорожек, взрывы конденсаторов.
  2. Тихая потеря работоспособности без проявления внешних повреждений.

Алгоритм ремонта импульсного блока питания состоит из двух последовательных этапов: вначале проводят первичные проверки без подачи напряжения, а затем — замеряют величины электрических характеристик.

Первый этап ремонта предусматривает обязательное выполнение шагов №1 и 2 только с отключенным питанием.

Шаг №1: внешний и внутренний осмотр

Первоначально вам придется вскрыть корпус и внимательно осмотреть его содержимое. Все, что вызывает сомнения, необходимо тщательно проверить.

Неисправности блока питания компьютера

Первый тип повреждения таит в себе ту опасность, что определить маркировку сгоревших деталей бывает сложно, а то и невозможно. На этом этапе ремонт может остановиться.

Сгоревший транзистор

Шаг №2: проверка входного напряжения

Во втором случае поиск места дефекта начинают с проверки наличия цепей питания 220 вольт. Часто возникает повреждение сетевого шнура или перегорание предохранителя.

Плавкая вставка предохранителя

Плавкая вставка предохранителя обычно перегорает от пробоя полупроводникового перехода диодов выпрямительного моста, транзисторных ключей или дефектов блока, управляющего дежурным режимом.

Все это надо проверить мультиметром: его переводят в режим омметра и замеряют состояние электрического сопротивления указанных цепочек, ищут обрыв, который необходимо устранить.

Сразу скажу, что не стоит успокаиваться, если обнаружили сгоревший предохранитель: он так просто не выходит из строя. Явно в цепи ИБП возникло короткое замыкание или перегруз: придется искать дополнительно поврежденные детали.

Если повреждений нет, то импульсный блок питания размещают на диэлектрическом основании стола и подают на него 220 вольт.

Входное напряжение надо проверить мультиметром в режиме вольтметра, провести измерения на входе сетевого фильтра и после плавкой вставки предохранителя.

Шаг №3: проверка состояния сетевого фильтра и выпрямителя

Работоспособность этой схемы следует определять вольтметром в режиме измерения переменного напряжения. Обращайте внимание на величину его сигнала на входе и выходе. У исправного прибора амплитуда гармоник практически не должна отличаться.

Качество фильтрации посторонних помех хорошо показывает осциллограф, но если он отсутствует, то это не так уж и страшно. Его замеры могут понадобиться в исключительных случаях, их допустимо пропустить.

Также проверяется работа выпрямителя: вольтметр для замера выходного напряжения переключают в режим цепей постоянного тока. Его концы устанавливают на ножки электролитического конденсатора или их дорожки.

Замер напряжения на конденсаторе

Когда напряжение на выходе из фильтра или выпрямителя не укладывается в норму, то придется проверять исправность всех деталей, которые входят в его схему.

Читайте также:  Как переделать «Крону» на аккумулятор в мультиметре

В первую очередь обращайте внимание на электролитические конденсаторы, которые при излишнем нагреве усыхают, теряя емкость, а то и взрываются. Сразу оцените правильность их геометрической формы.

Вздутый конденсатор

Любое малейшее искажение, особенно вздутый конденсатор — признак внутреннего повреждения. Если геометрия не нарушена, то приступают к электрическим замерам.

Стрелочным тестером это можно сделать двумя способами:

  1. Конденсатор разряжают. Прибор переводят в режим омметра и его внутренним источником заряжают емкость: просто щупы ставят на ножки и выдерживают небольшое время.

Затем цешку переводят в режим вольтметра и наблюдают за разрядом емкости. Способ приблизительный, оценочный, но довольно быстрый.

  • Более точно, но сложнее оценить конденсатор можно измерением его емкостного сопротивления. Через него пропускают синусоидальный ток, оценивают замерами его величину и падение напряжения. По закону Ома вычисляют емкостное сопротивление Хс. По нему рассчитывают емкость конденсатора C.

Конденсатор на переменном токе

Цифровой мультиметр позволяет просто определить величину емкости обычным замером. Внутри него уже есть встроенный генератор, а процессы измерения тока с напряжением, как и вычисления, автоматизированы.

Во вторую очередь анализируйте исправность диодов. Все они, включая силовые, должны проводить ток только в одну сторону. Их работоспособность оценивают мультиметром в режиме омметра или прозвонки.

Как работает диод

Шаг №4: проверка работы инвертора

Учитываем, что схема построения каждого высокочастотного генератора собирается не только из различных деталей, но и с большим разнообразием конструкторских решений.

Часто генератор объединен в составе электронной платы с высокочастотным трансформатором, а также выходным выпрямителем и фильтром. Мы будем исходить из того, что точной схемы построения ИБП у нас нет: проверяем ее по внешним, косвенным признакам.

Работаем мультиметром в режиме вольтметра: последовательно оцениваем амплитуды напряжений на разных точках инверторной схемы. Учитываем, что прибор показывает действующие величины, а не максимальные, амплитудные.

Осциллограф с делителем напряжений здесь более уместен: он покажет еще и форму каждого сигнала, что может значительно облегчить поиск неисправности.

Шаг №5: проверка выходных напряжений

Обращаю внимание, что многие ИБП, особенно компьютерные, на выходе имеют несколько цепей, отличающихся по величине напряжения, например, 12, 5 и 3,3 вольта. Причем они могут собираться на разные нагрузки.

Разъемы компьютерного блока питания

Их все надо проверить электрическими замерами. Чтобы запустить компьютерный блок в работу необходимо закоротить управляющий сигнал запуска БП PS_On на нулевой провод черного цвета.

Подача напряжения питания на компьютерный ИБП в режиме холостого хода вредна для электронной схемы. Сокращается ресурс его работы.

Для проверки под напряжением рекомендуется собрать простую схему из обычных резисторов. Желательно их выбирать большой мощности и ставить на радиаторы или делать принудительный обдув на время проверки.

Блок нагрузки

Если в качестве нагрузки использовать рабочие блоки компьютера, например CD привод, HDD или материнскую плату, как иногда рекомендуют отдельные мастера, то велика вероятность того, что не устраненная еще неисправность блока питания повредит и их.

Шаг №6: проверка работы защиты от перегрузок

Операция проводится после проверки качества выходных напряжений на всех участках схемы.

Импульсные блоки питания для сложных электронных устройств (мониторы, цифровые телевизоры и подобная техника) имеют в своем составе токовую защиту. Она снимает питание с подключенной цепи при возникновении в ней опасных токов, превышающих номинальную величину.

Эта защита работает от встроенного датчика тока, сигнал с которого о перегрузке подается на управляющую микросхему. Она, в свою очередь, отключает питание выходным силовым контактом с создавшегося аварийного режима.

Тема эта очень большая, обширная. Принципы построения токовой защиты в импульсных блоках питания доступно объясняет владелец видеоролика Ростислав Михайлов.

Шаг №7: проверка схемы стабилизации выходных напряжений

На этом заключительном этапе оценивается работа блока управления инвертором при меняющемся входном напряжении питания по действию схемы обратной связи.

Алгоритм проверки состоит из следующих этапов:

  1. ИБП отключают от цепей входного напряжения 220 вольт.
  2. К выходу оптопары подключают стрелочный тестер, переключенный в режим омметра, хотя можно использовать и цифровой мультиметр.
  3. На выход блока питания +/-12 V подают постоянное напряжение от регулируемого источника, меняют его величину и контролируют срабатывание оптопары по показаниям омметра.

При пониженном напряжении оптопара будет иметь высокое электрическое сопротивление, а при достижении на схеме уровня 12 вольт ее выход откроется, и стрелка омметра резко снизит свои показания.

Такое срабатывание свидетельствует о совместной исправности стабилитрона, оптопары и схемы стабилизации.

Не помешает также отдельно проверить целостность силового транзистора. Но предварительно его необходимо выпаять из платы.

Если позволяют габариты блока, то его можно доработать заменой:

  • выпрямительных диодов повышенной мощности;
  • накопительных конденсаторов большей емкости и напряжения.

Такие простые действия продлят ресурс работы, на который рассчитан импульсный блок питания, а его ремонт своими руками принесет несомненную пользу владельцу. Если у вас возникнут вопросы по этой теме, то воспользуйтесь разделом комментариев. Я отвечу.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: