ЛЯМБДА ЗОНД устройство принцип работы кислородного датчика

Все про лямбда зонд (кислородный датчик) — устройство, принцип работы, проверка

Сложно перечислить, сколько разнообразных датчиков обслуживают современный автомобиль, ведь чем сложней система и чем больше в ней электронной «начинки», тем важнее работа каждого элемента. Засбоит одно – посыплется всё.

Это относится и к автомобильному двигателю. Теоретически, «сферический ДВС в вакууме» довольно прост, но на практике к нему предъявляются такие требования, добиться которых без постоянного контроля просто невозможно. И одной из таких контрольных точек является лямбда зонд.

  1. Что такое лямбда зонд и для чего он нужен?
  2. Устройство и принцип работы
  3. Разновидности лямбда зондов
  4. Признаки неисправности
  5. Как проверить лямбда зонд?

Что такое лямбда зонд и для чего он нужен?

Сначала немного теории. Для работы двигателя нужен воздух, и довольно много. Оптимальное соотношение составляет примерно 14,7 кг воздуха на 1 л бензина, тогда бензин сгорает полностью с образованием углекислого газа. Разницу между фактически используемым и оптимальным количеством воздуха называют лямбда. Если соотношение идеальное, такую топливно-воздушную смесь называют стехиометрической или лямбда = 1. Если в смеси воздуха меньше, чем нужно, а бензина, наоборот, больше, то это переобогащенная смесь или лямбда 1.

Как измерить, поступает ли в двигатель нужное количество воздуха? Именно это и делает лямбда зонд. Его задача – контролировать концентрацию кислорода в выхлопе двигателя (второе его название – датчик кислорода). Он подает сигнал на ЭБУ, который, в свою очередь, регулирует продолжительность впрыска топливных форсунок. Таким образом поддерживается оптимальный баланс между потреблением топлива, чистотой выхлопа и отдаваемой мощностью. По сути, без лямбда зонда современный двигатель не обеспечивает той мощности, экономичности и экологичности, которые заложены в него производителем.

Найти, где находится лямбда зонд, просто: он располагается в выпускном коллекторе на выходе из двигателя (близко к двигателю, если датчик без подогрева, и подальше, в более удобном для доступа месте, если с подогревом). На автомобилях с катализатором могут ставиться два датчика: один на входе в катализатор, второй на выходе. Так контролируется концентрация кислорода в выхлопе и качество работы самого катализатора.

Устройство и принцип работы

Лямбда зонд не просто определяет остаточное количество кислорода в выхлопных газах, он сравнивает этот показатель с атмосферным воздухом. Это обеспечивает более точное измерение, сколько именно кислорода тратит двигатель.

Основной конструктивный элемент – пустотелый наконечник датчика из керамического оксида циркония. Внутренняя и наружная поверхность его покрыты платиновым напылением, которое выполняет роль электродов.

Датчик вставляется в выпускной коллектор. При работе он нагревается до 300-350 градусов, и при такой температуре керамика приобретает свойства проводника. Ионы кислорода переходят из внутренней части датчика, соединенной с атмосферным воздухом, к наружной, которая контактирует с выхлопными газами. При этом создается электрический ток, сила которого зависит от разницы концентрации кислорода внутри и снаружи. Силу тока и фиксирует ЭБУ.

Помимо основной рабочей части датчик имеет другие элементы: корпус, уплотнители, изоляторы, провода и т.д. Особого внимания заслуживает нагреватель внутри датчика, он позволяет начать работу сразу, не дожидаясь, пока двигатель выйдет на рабочий режим.

Видео о принципе работы кислородного датчика

Разновидности лямбда зондов

По материалу изготовления керамической чести различают циркониевые и титановые датчики.

  1. Циркониевые – классические датчики, в оценивается изменение силы тока, зависящей от разницы в концентрации кислорода;
  2. В титановых датчиках оценивается сопротивление на керамическом элементе, входящем в выпускной коллектор. Чем выше концентрация кислорода в выхлопе, тем выше сопротивление. Доступ внешнего воздуха им для анализа не нужен.

Вторая классификация лямбда зондов – двухточечные (обычные) и широкополосные.

  1. Двухточечные датчики работают именно по той схеме, которая уже описана, измеряется сила тока между двумя электродами;
  2. Широкополосный работает по другому принципу. Кислород из выпускного коллектора под действием силы тока закачивается в камеру, в которой поддерживается стехиометрический состав газа. Если в выхлопе больше кислорода, чем необходимо, лишний удаляется в атмосферу, если кислорода не хватает, он закачивается в камеру. В зависимости от состава газов в выхлопе, датчик измеряет направление и силу тока, поддерживающего нужную концентрацию в измерительной камере, и эти данные поступают на ЭБУ.

И третья классификация, по которой различают кислородные датчики – количество проводов для подключения.

  1. На самых простых датчиках без подогрева монтируются 1-2 провода. Один на блок управления, второй (если есть) на «массу»;
  2. На датчиках с подогревом ставятся 3-4 провода: первые два те же «сигнал» и «масса» (если есть) плюс еще два контакта на нагревательный элемент;
  3. На широкополосных датчиках установлены 5 проводов: первый и второй – нагрев (+ и -), третий – сигнал от измерительной ячейки, четвертый – сигнал от тока накачки, пятый – заземление.
    Распиновка у каждого производителя своя, но чаще всего черный провод всегда идет на сигнал.

Признаки неисправности

Что происходит, если лямбда зонд начинает сбоить или вообще отключается? Система, не получая обратной связи, начинает работать не в оптимальном, а в усредненном режиме, используя те параметры, которые записаны в памяти по умолчанию. И чаще всего это работа на переобогащенной смеси, которая не сгорает полностью. Как следствие, начинаются такие проблемы:

  1. Повышается расход топлива;
  2. Снижается мощность двигателя;
  3. Ухудшается отклик на педаль газа;
  4. Начинает сбоить двигатель на холостом ходу;
  5. Идет черный дым из выхлопной трубы;
  6. Увеличивается токсичность выхлопа;
  7. Перегревается катализатор;
  8. Загорается Check Engine.

Однако все эти признаки не дают четкого указания именно на лямбда зонд. Такие же симптомы бывают и при других сбоях, поэтому определить, что именно неисправно, можно только после диагностики.

  1. Естественный износ. Он работает в достаточно жестких условиях и рано или поздно выходит из строя, тем более с нашим бензином;
  2. Перегрев датчика. Да, он выносливый, но имеет и предел прочности;
  3. Проблемы с проводкой. У лямбды довольно тонкие кабели, и при неправильной установке они обрываются от вибрации;
  4. Поломка нагревательного элемента;
  5. Попадание воды во внутреннюю камеру или засорение каналов на атмосферный воздух;
  6. Попадание на наконечник масла или грязи;
  7. Кривые руки мастера, который его устанавливал.
Читайте также:  Водительские права можно будет продлить бесплатно и без посещения ГИБДД

Последствия выхода из строя кислородного датчика достаточно неприятны. Это не только повышение расходов на бензин, но и более заметные расходы, например, выход из строя каталитического нейтрализатора. Новый катализатор обойдется гораздо дороже самого крутого датчика, так что с диагностикой и заменой лучше не затягивать.

Как проверить лямбда зонд?

Проверить датчик кислорода самостоятельно можно мультиметром, осциллографом или старым «дедовским» способом – поставить новый рабочий и посмотреть на результат.

Видео «Как проверить лямбда зонд»

Начать проверку лучше с визуального осмотра. Если внешняя часть датчика выглядит потемневшей, на ней есть отложения копоти, это говорит о том, что он сгорел и дальнейшая проверка уже не нужна. Если внешне всё в порядке, провода не оборваны, без следов подгорания, придется тестить.

При подозрении на нерабочую лямбду в первую очередь проверяют работоспособность нагревателя. Для этого нужно:

  1. Включить зажигание;
  2. Мультиметр включить в режим вольтметра, подсоединить щупы к разъемам проводов подогрева;
  3. Замерить напряжение. Оно должно соответствовать напряжению аккумулятора, 12 или 24 В.

Если напряжение в цепи есть, проверяют состояние нагревательного элемента. Для этого измеряют сопротивление:

  1. Снять разъем;
  2. Мультиметр перевести в режим омметра, присоединить щупы к контактам нагревателя;
  3. Замерить сопротивление. Норма составляет 2-10 Ом.

Если нагреватель в порядке, измеряется «опорное» напряжение:

  1. Включить зажигание, не заводя двигатель;
  2. Мультиметр переключить на 2 или 20 В, щупы установить на сигнальный провод и «массу» (если ее нет, на корпус автомобиля);
  3. Нормальное напряжение составляет 0,45-0,50 В.

Далее можно проверить функциональность датчика. Для этого уже понадобится прогреть его до стандартной температуры, так как проверить его можно только в процессе нормальной работы:

  1. Завести двигатель и дать поработать на холостых оборотах 5-10 минут;
  2. Щупы вольтметра (мультиметра) присоединить к сигнальным проводам. Схема подключения должна учитывать полярность: плюс на плюс, минус на минус;
  3. В норме показания вольтметра начнут «плавать» в диапазоне от 0,1 до 0,9 В. Чуть хуже – 0,3-0,7, это говорит о том, что датчик «на последнем вздохе». Если показания «зависли» на какой-то постоянной цифре, лямбда мертвая без вариантов.

Такая же диагностика делается с помощью осциллографа, что будет еще более наглядно. В идеале на 2000-3000 оборотах дисплей покажет ровный красивый график, в котором верхний и нижний пики будут на одном или почти на одном уровне, а промежутки между ними не более 120 мс. Скачки, отклонения, зависания – признаки неисправности лямбды.

Можно ли отремонтировать лямбда зонд? Существует много рекомендаций по очистке, промывке, восстановлению кислородного датчика. Но реальность сурова: ни один из них не даст нормального результата. Поврежденный лямбда зонд можно только выбросить и на его место поставить новый, соответствующий параметрам автомобиля. Причем установку лучше делать либо самостоятельно (если есть опыт), либо доверить нормальному мастеру. Даже незначительное загрязнение колпачка датчика (моторным маслом, специальной смазкой и т.д.) приведет к тому, что он вскоре выйдет из строя.

Лямбда зонд – типы, устройство, диагностика

Типы лямбда-зондов, устройство, принцип действия, причины и признаки неисправности? Как определить неисправность датчика кислорода по внешнему виду. Методы проверки лямбда зонда осциллографом, мультиметром, тестером, как правилно подключить лямбда-зонд, назначение проводов.

Правильно писать: лямбда.

Коротко что такое лямбда-зонд: Лямбда-зонд – это датчик выхлопной системы, который определяет остаток кислорода в выхлопных газах. Зачем нужен? Лямбда-зонд передает сигнал блоку управления двигателем (ЭБУ) для управления соотношением топливо-воздушной смеси.

Функции и принцип действия датчика лямбда.

Для обеспечения идеального коэффициента конверсии каталитического нейтрализатора требуется обеспечить оптимальное сгорание топливо-воздушной смеси. В случае бензинового двигателя это достигается при соотношении воздух-топливо, равном 14,7 кг воздуха на 1 кг топлива, такой состав называется стехиометрическая топливная смесь.

Стехиометрическая смесь — это состав смеси в таких пропорциях топлива и воздуха, при которых происходит полное сгорание смеси без остатка избыточного кислорода. Теоретический коэффициент избытка воздуха топливной стехиометрической смеси равен единице.

Эта оптимальная смесь обозначается греческой буквой λ (лямбда). Лямбда используется для выражения соотношения воздуха между теоретическим потреблением воздуха и фактическим потоком воздуха:

λ = поток подаваемого воздуха: теоретический поток воздуха равен единице.

λ = 14,7 кг: 14,7 кг = 1

Принцип лямбда-датчика основан на измерении сравнения кислорода. Это означает, что оставшееся содержание кислорода в выхлопных газах (приблизительно 0,3–3%) сравнивается с содержанием кислорода в окружающем воздухе (около 20,8%).

Если остаточное содержание кислорода в выхлопных газах составляет 3% (обедненная смесь), возникает напряжение 0,1 V из-за разницы по сравнению с содержанием кислорода в окружающем воздухе.

Если оставшееся содержание кислорода составляет менее 3% (богатая смесь), напряжение датчика возрастает до 0,9 V пропорционально увеличению разницы. Содержание оставшегося кислорода измеряется с помощью нескольких лямбда-зондов.

Исправность лямбда-зондов обычно проверяют во время испытания на выбросы выхлопных газов. Поскольку он подвержен определенному износу, его следует регулярно проверять, чтобы убедиться, что он работает должным образом.

Читайте также:  Новый Acura RDX 2019

Как часто нужно проверять лямбда-зонд? Ответ: приблизительно каждые 30 000 км, например, при проведении техобслуживания в автосервисе.

За ужесточением законов, направленных на сокращение выбросов выхлопных газов, последовало усовершенствование технологии последующей обработки выхлопных газов.

Типы лямбда датчиков.

Какие бывают лямбда зонды и чем отличаются? Существует два типа датчиков лямбда – платиновый и титановый. Отличаются принципом определения количества не сгоревшего кислорода в выхлопных газах – по изменению сопротивления или по скачку напряжения.

Лямбда датчик на принципе скачка напряжения.

Этот зонд состоит из полого керамического элемента из диоксида циркония в форме пальца. Характерной особенностью этого твердого электролита является то, что он проницаем для ионов кислорода при температуре выше 300 ° С. Обе стороны керамики покрыты тонким пористым слоем платины, который служит электродом. Выбросы отработавших газов проходят снаружи керамического элемента, а внутренняя часть заполнена эталонным воздухом.

Схема строения лямбда зонда из диоксида циркония

Свойства керамического элемента означают, что разная концентрация кислорода с обеих сторон вызывает миграцию ионов кислорода, что, в свою очередь, создает напряжение. Это напряжение используется в качестве сигнала для блока управления двигателем, который регулирует соотношение воздух-топливо на впрыск в зависимости от содержания остаточного кислорода в выхлопных газах.

Этот процесс измерения остатка кислорода в выхлопных газах повторяется несколько раз в секунду на основе чего создается более богатая топливом или бедная топливная смесь.

Лямбда датчик на принципе изменения сопротивления

В датчиках этого типа керамический элемент изготовлен из диоксида титана с использованием многослойной толстопленочной технологии. Одним из свойств диоксида титана является то, что его сопротивление изменяется пропорционально концентрации кислорода в выбросах выхлопных газов. При более высоком содержании кислорода (обедненная смесь λ> 1) он менее проводящий (сопротивление увеличивается), а при более низком содержании кислорода (обогащенная смесь λ 1), так и в обогащенном (λ если он старый, выработал ресурс или загрязнен, например, присадками к топливу. Это можно определить при диагностике зонда. Сигнал лямбда зонда сравнивается с сохраненным шаблоном. Медленный зонд определяется как неисправность, например, через длительность периода сигнала.

Время отклика: частота зонда слишком низкая, оптимальное управление больше невозможно.

Как проверить лямбда зонд осцилографом, мультиметром, тестером датчика кислорода, анализатором выхлопных газов: устранение неисправностей.

Как основной принцип, перед каждой проверкой должен проводиться визуальный осмотр, чтобы убедиться в отсутствии повреждений кабеля или разъема. Система выпуска не должна иметь утечек.

Для подключения диагностического устройства рекомендуется использовать переходной кабель. Также необходимо убедиться, что лямбда-контроль не активен в некоторых рабочих состояниях, например во время холодного запуска до достижения рабочей температуры и при полной нагрузке.

Проверка лямбда зонда анализатором выхлопных газов

Одним из самых быстрых и простых тестов является измерение с помощью четырехгазового анализатора выбросов.

Процедура проверки датчика выполняется так же, как испытание на выбросы выхлопных газов. При достижении двигателем рабочей температуры, то путем снятия шланга примешивается ложный воздух в качестве переменной возмущения. В результате изменения состава выхлопных газов также изменяется значение лямбда, которое рассчитывается и отображается тестером выхлопных газов. Система образования смеси должна определять это по определенному значению и регулировать его в течение определенного времени (60 секунд, как в тесте на выбросы выхлопных газов). Если переменная примешенного воздуха удалена, значение лямбды должно уменьшиться до исходного значения.

Для получения верных значений необходимо знать значения лямбды производителя, а также соблюдать условия подключения примешиваемого воздуха.

Однако эта диагностика датчика кислорода лямбда определяет только – работает ли лямбда-контроль. Электрический тест невозможен. При этой процедуре существует риск, что современные системы управления двигателем контролируют смесь посредством точного определения нагрузки, так чтобы λ = 1, несмотря на то, что лямбда-контроль не работает.

2. Диагностика лямбда-зонда мультиметром.

Для проверки датчика кислорода рекомендуется пользоваться только высокоимпедансным мультиметром с цифровым или аналоговым дисплеем.

Мультиметры с низким внутренним сопротивлением (в основном в аналоговых устройствах) перегружают сигнал лямбда-датчика и могут привести к его поломке. Из-за быстро меняющегося напряжения сигнал лучше всего наблюдать с помощью аналогового устройства.

Мультиметр подключается параллельно сигнальной линии (черный кабель, см. Принципиальную схему) лямбда-датчика. Диапазон измерения мультиметра установить на 1 V или 2 V. После того, как двигатель запущен, на дисплее появляется значение в диапазоне от 0,4 – 0,6 V (опорное напряжение). Если рабочая температура двигателя или лямбда-датчика достигнута, постоянное напряжение начинает меняться от 0,1 В до 0,9 В.

Для достижения наиболее точных результатов измерений датчика кислорода, двигатель должен удерживать обороты примерно 2500 об / мин. Таким образом рабочая температура лямбда зонда будет достигнута даже в системах с лямбда-датчиком без подогрева. Важно, чтобы на холостом ходе температура выхлопных газов была достаточной, иначе не прогретый лямбда датчик остынет и сигнал будет неверный.

Осторожно. Ни в коем случае не используйте омметр на циркониевом датчике -это может привести к его повреждению, вплоть до выхода из строя.

3. Проверка лямбда зонда осциллографом.

Сигнал лямбда-датчика лучше всего изображать с помощью осциллографа. Как при проверке зонда с помощью мультиметра, основным предварительным условием является то, что двигатель или лямбда-датчик должны иметь рабочую температуру.

Осциллограф подключен к сигнальной линии кислородного зонда. Диапазон измерения зависит от используемого осциллографа. Если устройство имеет автоматическое обнаружение сигнала, то это упрощает предварительную настройку. Для ручной регулировки установите диапазон напряжения: 1 – 5 В, а время: 1 – 2 секунды.

Частота вращения двигателя должна также удерживаться на 2500 об / мин.

Читайте также:  Новый Bugatti Chiron - фото, видео, технические характеристики, цена.

Переменное напряжение на дисплее осциллографа выглядит в форме синусоиды. По этому сигналу можно оценить следующие параметры:

  • Высота амплитуды (максимальное и минимальное напряжение 0,1 – 0,9 V);
  • Время отклика и продолжительность периода (частота около 0,5 – 4 Гц).
4. Проверка лямбда зонда тестером датчиков лямбда.

Различные производители предлагают специальные тестеры для проверки лямбда-датчиков. На устройстве работа лямбда-датчика отображается с помощью LED светодиодов.

Тестер лямбда зонда подключен к сигнальной линии зонда так же, как мультиметр или осциллограф. После того, как датчик кислорода достиг рабочей температуры и начинает работать, светодиоды отображают значения на шкале, в зависимости от соотношения воздух-топливо и кривой напряжения (0,1 – 0,9 V) датчика.

Здесь все технические характеристики настроек измерительного устройства для измерения напряжения относятся к датчикам диоксида циркония (датчикам скачков напряжения). Для диоксида титана диапазон измерения напряжения изменяется до 0 – 10 V, а измеряемые скачки напряжения – от 0,1 до 5 В.

5. Проверка состояния защитной трубки

В первую очередь необходимо изучить спецификации производителя, так как именно в инструкции изготовителя указаны условия эксплуатации, которые должны соблюдаться как основной принцип. Наряду с электронными проверками состояние защитной трубки лямбда зонда автомобиля дает важную информацию о работоспособности датчика.

Признаки, причины и устранение неисправностей лямбда зонда при проверке осмотром его состояния:

  1. Защитный кожух лямбда зонда сильно закопчен сажей
    Причина:
    Двигатель работает на слишком богатой смеси
    Устранение: Необходимо заменить зонд и устранить причину чрезмерно богатой смеси, чтобы предотвратить повторное загрязнение зонда.
  2. Блестящие депозиты на защитной трубе
    Причина:
    Использование этилированного топлива
    Устранение: Свинец разрушает элемент зонда. Необходимо заменить датчик и проверить каталитический нейтрализатор. Замените этилированное топливо неэтилированным топливом. Выясните какие АЗС на пути регулярных поездок продают качественное топливо.
  3. Налет белого или серого цвета на датчике кислорода
    Причина: Двигатель сжигает масло, дополнительные присадки в топливе.
    Устранение: Необходимо заменить зонд и устранить причину сгорания масла.
  4. Неправильная установка лямбда зонда
    Причина:
    Недостаточно опыта, не читал инструкцию, кривые руки. Во время монтажа необходимо использовать предписанный специальный инструмент и соблюдать момент затяжки.
    Устранение:
    Заменить лямбда датчик на новый или рабочий.

6. Проверка функции нагрева лямбда зонда. Устранение неисправности.

Для проверки нагревательного элемента питания лямбда зонда можно проверить внутреннее сопротивление и напряжение питания.

Для этого отсоедините разъем от лямбда-датчика. Со стороны лямбда-датчика используйте омметр для измерения сопротивления на обоих проводах нагревательного элемента. Сопротивление должно быть от 2 до 14 Ом. На стороне автомобиля используйте вольтметр для измерения напряжения питания. Напряжение должно быть больше 10,5 V (бортовое напряжение).

При обнаружении обрыва цепи устраните неисправность. Ниже приведена таблица назначения проводов и цвета проводов датчиков лямбда в зависимости от типа.

Различные варианты подключения и цвета кабеля лямбда зонда:

Необогреваемые зонды

Количество кабелей Цвет кабеля Соединение
1 Черный Signal (заземление через корпус)
2 Черный Сигнал

Обогреваемые зонды:

Количество кабелей Цвет кабеля Соединение
3 Черный

Датчики сопротивления из диоксида титана:

Количество кабелей Цвет кабеля Соединение
4 красный

В любом случае, если есть информация от производителя, то необходимо ставить её в приоритет.

Что важно и необходимо знать при замене лямбда зонда

При установке нового лямбда зонда следует учитывать следующее:

  • При снятии и установке датчика кислорода используйте только специальный инструмент, предназначенный для этой цели. Специнструмент для снятия датчиков есть в наборах, а бывает и отдельно съемник лямбда зондов. Использование его значительно упростит снятие, и установку датчика.
  • Проверьте резьбу в выхлопной системе на наличие повреждений.
  • Используйте только прилагаемую смазку или смазку, специально предназначенную для лямбда-датчиков.
  • Избегайте контакта измерительного элемента зонда с водой, маслом, смазкой, чистящими средствами и средствами для удаления ржавчины.
  • Соблюдайте соответствующие моменты затяжки, указанные производителем лямбда-датчика или автомобиля.
  • При прокладке соединительного кабеля следите за тем, чтобы он не соприкасался с горячими или подвижными объектами и не проходил через острые края.
  • Проложите кабель нового лямбда-датчика в соответствии с шаблоном первоначально установленного датчика, насколько это возможно.
  • Не прокладывайте провода внатяжку. Убедитесь, что соединительный кабель имеет достаточный запас подвижности до сильной натяжки, чтобы он не оторвался от выхлопной системы при вибрации и движении.
  • Не следует использовать какие-либо добавки на основе металлов или топливо, содержащее свинец.
  • Никогда не используйте лямбда-датчик, который упал на землю или поврежден.

Что такое лямбда зонд (датчик кислорода)

Лямбда зонд (он же датчик кислорода) — специальное устройство, один из видов датчика. Задача — контроль объема кислорода в коллекторе силового узла.

С помощью устройства оценивается общий объем кислорода или несгоревшей топливной смеси в выхлопе транспортного средства.

Часто лямбда зонды устанавливаются в дымоходах отопительных котлов и прочих системах, где необходим кислородный контроль.

Назначение

Знание особенностей работы и назначения лямбда зонда весьма полезны для автолюбителя.

Во-первых, уже никто не сможет обмануть владельца транспортного средства, а во-вторых, в случае поломки можно самому поставить «диагноз».

Задача лямбда-зонда — создать условия для выполнения функций каталитическим нейтрализатором, который осуществляет фильтрацию выхлопа автомобиля.

По сути, катализатор снижает вредность выхлопа, а лямбда-зонда осуществляет контроль работы данного устройства.

Название зонда произошло от известной греческой буквы «лямбда», которой обозначается объем кислорода в подготовленной горючей смеси.

Величина лямбды составляет 14.7 единиц на одну единицу топлива. Пропорциональность обеспечивается, благодаря электронному впрыску топливной смеси и работе лямбда-зонда.

Назначение устройства зависит и от его позиции в транспортном средстве.

Как правило, датчик кислорода монтируется перед катализатором, что позволяет точно измерять уровень кислорода в горючей смеси, а в случае дисбаланса давать сигнал блоку управления впрыска.

Чтобы повысить эффективность работы, на новых моделях авто ставится не один, а два датчика, закрепляемые с одной и другой стороны катализатора.

Такая конструкция позволяет с большей точностью анализировать состав выхлопа.

Эволюция развития

Раньше датчики кислорода были резистивными, что снижало точность измерений и надежность самих устройств.

Современный лямбда-зонд работает как пороговое устройство. При этом сигнал, полученный от датчика, позволяет точно фиксировать уровень отношения кислорода в выхлопе и корректировать его.

Оптимальное отношение — 14,7:1 (реального к необходимому объему воздуха). Если параметр ? соответствует данной норме, то смесь идеальная.

В случае превышения показателя смесь обеднена. Если же ?, наоборот, меньше, то в выхлопе много смеси и объема кислорода недостаточно для сгорания.

Впервые лямбда-зонд был изготовлен в 1960 году предприятием Robert Bosch GmbH. Руководителем проекта был Гюнтер Бауман.

В серийное производство устройство поступило лишь через 16 лет (в 1976 году). Первыми производителями, которые занялись выпуском, стали компания Сааб и Вольво.

Основные типы устройств

Сегодня можно выделить несколько типов кислородных датчиков. Все они могут отличаться по нескольким критериям:

  • по числу проводов — от 1 до 6;
  • по организации сенсорного элемента (есть два вида — пластинчатые и пальчиковые);
  • по крепежу в выхлопной трубе — фланцевые или на резьбе;
  • по диапазону измерений параметра лямбды — широкополосные (измерение производится в диапазоне от 0.7 до 1.6) или узкополосные, контролирующие уровень лямбда на уровне выше единицы.

Каждый из типов устройств имеет свои особенности.

Одно контактные устройства.

Оборудованы одним сигнальным проводом. Именно по нему передается сигнал, генерируемый устройством.

2-контаткные датчики

Оборудуются двумя проводами. Один является сигнальным, а второй выполняет функцию заземления через корпус устройства.

С помощью заземляющего проводника можно точно определить показатели сигнального провода.

3-контактные

Здесь предусмотрен сигнальный провод, один «массовый» провод и третий провод, направляемый к нагревательному устройству.

Особенность таких датчиков — быстрое достижение нужной температуры, повышенный период службы устройства, а также меньшие требования к выхлопной системе.

Нагревательный элемент, который монтируется в системе, имеет мощность 12 или 18 Вт.

4-контактные

В них предусмотрено четыре провода:

  • сигнальный проводник,
  • провод, питающий нагревательное устройство;
  • третий провод — «земля»;
  • четвертый провод — может использоваться для решения каких-либо других задач (в зависимости от системы управления автомобиля).

Может быть такое положение контактов.

К примеру, его можно использовать в качестве заземления или же для питания нагревательного элемента.

Особенность современных лямбда-зондов в том, что они взаимозаменяемы и имеют схожую конструкцию.

К примеру, можно менять датчики с подогревом на устройства без подогрева. При этом возможны проблемы с разъемами или невозможностью запитать устройство.

В случае нехватки проводов их можно проложить самостоятельно, а в качестве разъема использовать контакты автомобиля.

Маркировка может отличаться, но провод подачи сигнала всегда окрашивается в черный цвет.

«Масса» может быть желтой, серой или белой.

Устройство современных датчиков кислорода

В составе датчика кислорода есть два электрода — внутренний и внешний.

Первый делается из циркония, а второй — из платинового напыления, что делает его более чувствительным к воздействию кислорода.

Лямбда-зонд смонтирован таким образом, чтобы он пропускал весь объем отработавших газов транспортного средства.

В процессе прохождения газов внешний электрод оценивает уровень кислорода в отработавших газах, что приводит к изменению потенциала между электродами.

Чем больше объем кислорода, тем выше уровень напряжения. Рабочая температура циркония, которым покрыт электрод — 300-1000 градусов Цельсия.

Вот почему датчики кислорода конструктивно дополняются подогревателями, необходимыми в момент пуска.

Датчики бывают двух типов — двухточечными и широкополосными. Внешне они похожи, но отличаются конструкцией и принципом действия.

Так, 2-точечный датчик состоит из двух электродов. Его задача — фиксация коэффициента повышенного объема воздуха в топливной смеси.

Что касается широкополосного устройства, то это более современная конструкция. Главная его особенность — применение силы тока закачивания.

При этом конструктивно широкополосный датчик состоит из двух керамических устройств — закачивающего и 2-точечного.

Принцип действия

В кислороде присутствуют отрицательно заряженные ионы. Они собираются на электродах из платины и при достижении нужной температуры датчика (где-то 400 градусов Цельсия) создается разность потенциалов (напряжение).

Если смесь слишком обеднена, то объем кислорода в газах будет высоким, и наоборот, если смесь обогащена, то кислорода будет мало.

В первом случае напряжение равно 0,2-0,3 Вольта, а во втором — 0,7-0,9 Вольта.

Система управления мотора поддерживает уровень напряжения около 0,4-0,6 Вольт, то есть уровень лямбда равен 1.0.

В процессе движения происходит изменение режимов работы мотора, что способствует корректировке параметра напряжения в обе стороны. При этом узкополосный датчик может улавливать лишь те параметры, которые выше нуля.

Лямбда-зонд, который установлен после катализатора, имеет такой же принцип действия.

После обработки газов катализатором, уровень кислорода остается неизменным. Это, в свою очередь, позволяет поддерживать оптимальную разницу потенциалов в пределах 0.4-0.6 Вольта.

Широкополосный лямбда-зонд: главные отличия, принцип работы

Широкополосный датчик для измерения уровня кислорода — лямбда-зонд, который монтируется в современных авто.

Его особенность — выполнение функций катализатора на входе в устройство. Измерение необходимых параметров происходит благодаря использованию силы входного тока.

Главное отличие широкополосного датчика заключается в том, что в его составе есть два рабочих элемента — закачивающий и 2-точечный керамический обогреватель.

В процессе закачивания кислород пропускается через соответствующий элемент под действием силы тока.

Принцип действия широкополосного зонда построен на поддержании напряжения в пределах 450 мВ.

Сама разность потенциалов появляется между электродами двухточечного элемента. Достижение нужного напряжения гарантируется, благодаря изменению силы тока закачивания.

Если объем кислорода в выхлопе снижается, то напряжение между электродами растет, а ЭБУ получает соответствующую команду.

После этого формируется сигнал требуемой силы тока, что приводит к выравниванию напряжения.

Сила тока анализируется в ЭБУ, после чего блок управления воздействует на систему впрыска.

Нормальная работа датчика кислорода возможна при температуре в 300 градусов Цельсия, которая достигается с помощью нагревателя.

К чему приводит неисправность зонда?

Первая неприятность, к которой приводит выход из строя зонда — повышение «прожорливости» авто и ухудшение общей динамики.

Главная причина — искажение показаний датчика, что приводит к отклонению отношения кислорода и топлива.

В случае выхода из строя одного датчика машина остается на ходу (здесь многое зависит от самого транспортного средства).

Есть модели, в которых отказ механизма приводит к расходованию топлива в больших объемах. Как следствие, может понадобиться срочный ремонт.

В случае поломки лямбда-зонда его замена должна производиться только на аналогичный механизм.

Если же установить устройство другого типа, то бортовой компьютер транспортного средства может попросту не воспринимать сигналы нового датчика.

При поломке сразу двух датчиков авто и вовсе оказывается обездвиженным.

Причины поломки

Стоит отметить, что датчик кислорода имеет повышенную чувствительность к поломкам.

Причиной выхода из строя может стать:

  1. Низкое качество топлива. При плохом бензине на лямбда-зонде остаются определенные части свинца. Появление такого напыления ухудшает чувствительность электрода к топливной смеси. Проходит какое-то время и датчик можно выбрасывать.
  2. Механическая поломка. Сам датчик кислорода может выйти из строя. При этом к основным повреждениям можно отнести дефект корпуса, нарушение обмотки устройства и так далее.

Решается проблема посредством установки нового датчика. Что касается ремонта, то при таких поломках он бесполезен.

3. Чрезмерные объемы топлива, подаваемые в цилиндры мотора, попросту не успевают сгорать и вылетают в систему выхлопа в виде сажи.

Через время черный налет скапливается на узлах системы выхлопа машины и на датчике кислорода в том числе. Как следствие, лямбда зонд начинает работать неправильно.

В качестве «лечения» можно использовать специальные очистители и тряпки, позволяющие убрать загрязнения. Если же датчик забивается регулярно, то лучше его поменять.

Как выявить поломку?

Распознать неисправность лямбда зонда можно по следующим признакам:

  • повышению общей токсичности паров выхлопа. Конечно, определить данный показатель на «глазок» не получится. Здесь может помочь только специальный прибор. Если уровень СО сильно возрос, то можно с уверенностью говорить о выходе из строя датчика кислорода;
  • увеличение «прожорливости» автомобиля — проблема, которую можно увидеть почти сразу. Единственное, что повышение расхода не обязательно сигнализирует о неисправности датчика;
  • загорание лампочки Check Engine — еще один сигнал, что в системе что-то не так. Как показывает практика, загорание данной лампочки связано с поломкой лямбда зонда. Чтобы более точно определить ошибку и выявить дефект, необходимо отправиться на сервис.

Также важно знать как проверить лямбда зонд на исправность.

Можно ли отключать лямбда зонд?

Отключение датчика кислорода — дело нескольких минут для специалиста. Только вот польза такой работы вызывает большие сомнения.

С момента отключения лямбда зонда ЭБУ переходит на средние параметры подачи топлива в двигатель, что сказывается на надежности и расходе топлива (как правило, в худшую сторону).

Кроме этого, в случае отключения датчика кислорода может понадобиться и перепрошивка самого ЭБУ автомобиля, ведь постоянно будет «вылазить» ошибка.

Поэтому если лямбда зонд вышел из строя его желательно заменить.

Обманка лямбда зонда: что это?

При замене катализатора пламегасителем или демонтаже устройства сигналы двух лямбда зондов будут идентичны. Это, в свою очередь, неизбежно приведет к ошибкам.

Проблема решается путем установки обманки лямбда зонда.

Она бывает двух видов:

По своей конструкции это проставка, выполненная из бронзы и имеющая определенные размеры. Внутри узла есть специальная крошка с каталитическим напылением, которая помогает вредным веществам догореть.

Такая обманка представляет собой прибор на основе микропроцессора, анализирующего весь процесс прохода выхлопных газов и осуществляющего обработку данных с первого датчика.

Задача — обеспечить корректную работу системы управления мотором в условиях, когда катализатор поломан или удален.

Несмотря на свою компактность, лямбда зонд является одним из наиболее важных узлов автомобиля. Он не только снижает вредность выброса, но и отвечает за ряд других функций.

Отсутствие данного устройства может стать причиной повышения расхода топлива, ухудшения динамики мотора или полной невозможности эксплуатации автомобиля.

Лямбда-зонд (кислородный датчик): как устроен и за что отвечает?

На автомобилях с электронным зажиганием для ограничения выброса вредных веществ в атмосферу устанавливают лямбда зонд, который реагирует на содержание углекислоты и других опасных примесей. Свое название этот элемент получил по букве греческого алфавита, которая выбрана для обозначения коэффициента избытка воздуха в топливовоздушной смеси.

Устанавливают кислородный датчик в магистрали выхлопа. Зная, что такое лямбда зонд в автомобиле и как он устроен, можно выбрать оптимальное решение при обнаружении неполадок.

Что такое лямбда зонд в машине и для чего он нужен

Назначение лямбда-зонда — контроль уровня вредных примесей в выхлопных газах. Этот элемента позволяет поддерживать содержание углекислоты в пределах 0,2 – 0,3 %. Основная функция — подача электрического сигнала в электронный блок управления силового агрегата. Это единственное, на что влияет лямбда зонд, но роль датчика нельзя преуменьшать.

Установкой кислородных датчиков в выхлопной трубе нового автомобиля занимается производитель. В дальнейшем при эксплуатации машины рекомендуются визуальная проверка и компьютерное тестирование лямбда‐зонда не реже одного раза в год или после 10 — 15 тыс. км пробега. Если компонент будет поврежден или изношен, то придется его заменить. Если не получается замерить содержание кислорода, это может станет причиной поломки двигателя.

Устройство и принцип работы лямбда зонда

Лямбда зонд представляет собой обычный электрический элемент, через который проходят выхлопные газы. Устройство датчика кислорода предполагает наличие внутри корпуса токопроводящего элемента, электродов, сигнального контакта и заземления. Выходной электрический сигнал формируется при изменении напряжения в зависимости от состава выхлопного потока.

Работа датчика основана на принципе сравнения уровня кислорода в отработавших газах и атмосферном воздухе. Установка внутри трубы до и после каталитического нейтрализатора полностью исключает попадание вредных веществ за пределы системы. Электрическая схема в устройстве такого датчика кислорода задействуется только после разогрева до температуры 300 – 400 ºC, что необходимо для появления электропроводимости твердого электролита.

Принцип работы лямбда зонда позволяет выявить даже малейшее превышение норм по опасным веществам. Но даже при заправке горючего высокого качества с минимальным содержанием примесей через 100 – 150 тыс. км пробега датчики кислорода, а часто и катализаторы (нейтрализаторы), приходится менять.

Каких видов бывают лямбда зонды?

Независимо от того, как работает датчик кислорода и в какой части системы он установлен, для получения электрического сигнала о составе выброса внутри предусмотрен твердый электролитический элемент. В зависимости от типа этого компонента различают следующие виды зондов:

  • циркониево-оксидные, способные определить количество воздуха в топливе в относительной величине (больше/меньше);
  • датчики с высокой чувствительностью, способные точно определить соотношение компонентов топливной смеси (Denso);
  • титановые, которые работают без доступа атмосферного кислорода.

На автомобили устанавливают датчики, предназначенные для конкретной марки или модели, а также изделия универсальной конструкции. Последние не комплектуют оригинальным разъемом — его, увы, приходится искать отдельно.

Информацию о составе выхлопа на контроллер подают и датчики других видов, которые отличаются количеством контактов (1- 6), способом установки (резьба/фланец), а также узко- или широкополосные модели по диапазону измерения (до коэффициента 1,6). Все варианты подключаются и работают по аналогичной схеме с передачей сигнала в ЭБУ для корректировки состава топливовоздушной смеси и объема впрыска топлива.

Распространённые причины неисправностей лямбда зонда и способы их устранения

Датчики содержания кислорода в топливовоздушной смеси со временем выходят из строя, что можно определить по нестабильной работе двигателя и увеличенному расходу горючего. Причины неисправности лямбда — это заправка топлива низкого качества, неполадки системы приготовления и подачи горючего, попадание на датчик спецжидкостей. Неполадки проявляется следующими признаками:

  • резкий рост оборотов до максимальных значений и мгновенное отключение мотора;
  • ухудшение качества подаваемой в цилиндры смеси, снижение полноты сгорания;
  • колебания оборотов холостого хода;
  • значительное снижение мощности при увеличении оборотов;
  • сбои в работе электронных блоков из‐за задержек в подаче сигналов с датчика;
  • движение автомобиля рывками;
  • появление в двигательном отсеке звуков, которые нехарактерны при нормальной работе мотора;
  • поздний впрыск при нажатии педали.

Для восстановления работоспособности электроники и системы впрыска понадобится замена или правильная очистка лямбда зонда. При очистке нужно снять керамический наконечник и удалить загрязнения при помощи химических средств.

Заключение

Даже одна‐две заправки топливом низкого качества могут стать причинами выхода из строя лямбда зонда. В таких случаях нарушается работа ЭБУ мотора, что и приводит к сбоям. Чтобы восстановить питание двигателя горючим и устранить неполадки, приходится заменять компонент, поскольку чистка считается малоэффективным способом.

Экологический “прибамбас” или более важная персона? Почему лямбда-зонд звучит как проклятие

Среди множества датчиков, которыми оборудован автомобиль, что делает его, говоря образно, похожим на космонавта, проходящего перед полетом медицинское обследование, есть один, чье название до сих пор звучит как проклятие.

Во всяком случае многие автомобилисты со стажем, заставшие времена, когда иномарки начали осваивать наши улицы и проселочные дороги, обязательно вспомнят историю из своей биографии, которая подтвердит печальную известность этого датчика.

Его именуют кислородным датчиком, датчиком кислорода либо лямбда-зондом. Однако оценивает он не содержание кислорода в отработавших газах, как можно подумать из названия, а разницу между концентрациями O2 в выхлопе и окружающей среде, из-за чего его технически правильное “имя” должно быть более сложным для восприятия.

Последнему из общепринятых названий рассматриваемый датчик обязан двум обстоятельствам. Во-первых, в теории коэффициент избытка воздуха в топливовоздушной смеси, подготовленной к последующему сгоранию в цилиндре двигателя, обозначается греческой буквой лямбда.

Во-вторых, датчик зондирует отработавшие газы, удаляемые из цилиндров после сгорания горючей смеси. Отсюда – зонд.

В то же время похожесть функции лямбда-зонда с назначением приборов, с помощью которых при прохождении техосмотра определяется содержание в выхлопных газах токсичного CO, ведет к ошибке в установлении его истинной миссии.

В период появления иномарок, отличавшихся от вытесняемых с наших дорог “жигулей”, “москвичей” и “запорожцев” наличием лямбда-зондов и катализаторов, повсеместно считалось, что каталитический нейтрализатор вместе с лямбда-зондом составляют систему нейтрализации выхлопных газов. До сих пор бытует заблуждение, что лямбда-зонд – экологический “наворот”, о чем свидетельствуют совсем свежие статьи на вроде бы серьезных тематических сайтах.

Одним из результатов правильной работы лямбда-зонда действительно является снижение содержания токсичных компонентов, выбрасываемых через выхлопную трубу в окружающую среду. Поэтому датчик кислорода можно наряду с катализатором, сажевым фильтром или новомодной системой впрыска мочевины причислить к ненавидимым многими автовладельцами “подаркам” от экологов, оплачивать которые приходится из своего кармана. Однако на самом деле лямбда-зонд – куда более серьезная и важная персона.

Кислородный датчик оценивает, насколько качественно прошло сгорание в цилиндрах двигателя, – это и есть его предназначение. Если рабочая смесь сгорела правильно, полученные в результате мощность, расход топлива, а вместе с ними и экологические показатели будут оптимальными.

Сгореть неправильно топливовоздушная смесь может, если нарушен баланс между количеством воздуха и топлива, поступившего в цилиндры. Когда топлива подается больше, чем можно сжечь, смесь называют богатой. Если соотношение нарушено в пользу воздуха – бедной.

Соответственно изменяется содержание остаточного кислорода в выхлопе, а с ним и разница между концентрацией кислорода в отработавших газах и окружающей среде, которую определяет лямбда-зонд. Если разница существенная, рабочая смесь, сгоревшая в цилиндрах, наверняка была чересчур богатой. Когда она невелика, можно говорить о бедной смеси.

Схематически смысл действий лямбда-зонда заключается в следующем. За исключением некоторых режимов работы двигателя, например, запуска и прогрева, когда смесь намеренно обогащают, сигнал, что сгоревшая смесь была слишком богатой либо бедной, чаще всего указывает на неэффективную работу мотора. Информация, полученная лямбда-зондом, передается блоку управления двигателем, а далее электроника корректирует подачу топлива в цилиндры таким образом, чтобы соотношение топлива и воздуха в смеси вновь стало оптимальным.

Поэтому неисправности лямбда-зонда обязательно сопровождаются снижением мощности, увеличением расхода топлива и содержания в выхлопе вредных веществ. Однако перед тем как рассмотреть причины выходов лямбда-зондов из строя, следует сказать, что в современных автомобилях датчиков кислорода, как правило, два.

Первый, основной, размещают в начале выхлопного тракта как можно ближе к двигателю, другой располагается после катализатора.

Функции второго скорее диагностические – он следит за тем, работает первый кислородный датчик или нет. Поэтому второй датчик, как правило, проще, из-за чего существенно дешевле первого. Отсюда весьма распространенная ошибка, связанная с желанием сэкономить на замене первого датчика, когда он отказал.

Практика показывает, что если нет вопросов с присоединительными размерами, то поставленный взамен более простой либо подобранный для замены универсальный лямбда-зонд работать будет, однако сомнительно, что он сможет справляться с обязанностями столь же идеально, как делал бы датчик, которому место первого принадлежит по праву.

Другим нюансом, с которым можно столкнуться при замене лямбда-зонда, является то, что в зависимости от экологических норм, действующих на том или ином рынке сбыта, один и тот же мотор может иметь разные настройки, а его лямбда-зонды, несмотря на внешнюю идентичность, – разное исполнение. На это тоже желательно обращать внимание при подборе запчастей.

Сами лямбда-зонды бывают нескольких типов. Не будем останавливаться на том, как их могут называть ремонтники на профессиональном сленге. Некоторые законодатели моды в производстве датчиков, в частности Denso, предлагают следующую классификацию: воздушный, кислородный, титановый, широкополосный. У кислородного и широкополосного лямбда-зондов выходной сигнал для блока управления двигателем – величина напряжения, у воздушного – величина постоянного тока, у титанового – сопротивления. Самый простой из них – воздушный, наиболее сложный – широкополосный.

Каковым бы ни было конструктивное исполнение, главное для надежности и долговечной работы лямбда-зонда – стойкость его рабочего элемента против загрязнения. Если для примера взять датчики, имеющие напряжение в качестве выходного сигнала, то их рабочие элементы изготавливаются с использованием циркониевых и платиновых сплавов.

Если стержень из такого материала разместить так, чтобы его концы оказались в объемах с разным содержанием кислорода, между концами стержня появляется разность потенциалов. При этом напряжение будет тем больше, чем больше разница в концентрациях кислорода. Это принцип работы датчика, из которого следует, что любое загрязнение рабочего элемента является помехой для правильного определения содержания кислорода.

Именно использование некачественного топлива, прежде всего бензина, в продуктах сгорания которого имелись соединения свинца и других металлосодержащих присадок, добавляемых в бензин для увеличения его детонационной стойкости, и было причиной массовой “гибели” лямбда-зондов и приобретенной ими дурной славы в момент “пришествия” иномарок в наши пенаты.

Нынешний бензин с его предшественниками не сравнить. Поэтому сегодня выход лямбда-зондов из строя раньше положенного срока может быть обусловлен следующими внешними причинами.

Это, во-первых, их регулярный перегрев, например, из-за догорания бензина в выхлопном коллекторе, что случается при льющих форсунках, пропусках зажигания на свечах, нарушениях фаз газораспределения. Нечто похожее происходит в моторах, имеющих проблемы с запуском, когда из-за многочисленных неудачных попыток запустить двигатель несгоревшее топливо оказывается в выпускном тракте, где позже догорает. Перегрев может повредить рабочий элемент датчика.

Следующая опасность – обрастание рабочего элемента нагаром. Предпосылка – выброс масла в выпускной тракт при изношенных деталях поршневой группы, маслосъемных колпачках, проблемах с уплотнениями картриджа турбокомпрессора. И последняя из внешних причин – механическое повреждение, ведущее к поломке датчика либо нарушению его непроницаемости для влаги и грязи.

Все остальное, что может произойти, связано с внутренними проблемами. Лучшие лямбда-зонды имеют со стороны выпускного тракта внешний и внутренний защитные колпачки плюс покрытие рабочего элемента, а также оснащены воздушным фильтром со стороны, находящейся снаружи выхлопной системы. Худшие могут этого не иметь, что сказывается на сроке службы.

Наконец, сделать узел нефункционирующим способна электрическая часть, или, другими словами, обрывы в проводке, в том числе в цепи подогрева, которым лямбда-зонды оснащены в связи с тем, что начинают нормально работать только при температурах выше 280°С. Это, кстати, объясняет, почему первый из датчиков размещают как можно ближе к двигателю, – для ускорения разогрева.

Когда датчик кислорода перестает работать, блок управления переводит двигатель в режим работы по усредненным параметрам, не отвечающим текущим нагрузочным и скоростным условиям движения. Отсюда проблемы с тяговыми, экономическими и экологическими показателями.

Что последует дальше, зависит от модели автомобиля. В машинах старых поколений дело может ограничиться зажиганием контрольного указателя Check engine, однако по мере того, как увеличивалась важность экологии, производители начали практиковать перевод мотора на работу в аварийном режиме. После этого даже легкомысленный либо неопытный водитель поймет, что если он куда-то должен ехать, то только на СТО.

Сергей БОЯРСКИХ
Фото автора и из открытых источников
ABW.BY

Более 40.000 предложений о продаже запчастей в нашей базе объявлений

Принципы работы кислородного датчика, лямбда зонда

Корректное функционирование мотора в автомобиле возможно лишь при правильной работе каждого узла, агрегата и системы. В случае сбоя хотя бы одного из ключевых компонентов двигатель начинает функционировать с нарушениями, а это всегда доставляет множество проблем автовладельцу. Далее мы поговорим о кислородном регуляторе, опишем принцип работы лямбда зонда, как провести его диагностику и очистить в случае необходимости.

Характеристики кислородного датчика

Все знают, что инжекторный двигатель является более экономичным и безопасным (с экологической точки зрения), чем карбюраторный мотор. Это становится возможным благодаря полному контролю за подачей топливной смеси и воздуха. Этот контроль осуществляется несколькими датчиками, которые обеспечивают проверку основных рабочих параметров и направляют эти данные электронному блоку. После их анализа производится корректировка работы системы в целом.

Кислородный датчик

Контроллеры, для получения полной информации центральным блоком, установлены не только на впускной системе (определение количества топлива/воздуха), но и на выпуске.

Здесь работает лишь один регулятор, но именно его работа определяет, какой объем воздуха станет поступать в цилиндры.

Его название – лямбда зонд (кислородный датчик). И это один из важнейших участников системы.

Предназначение и основные функции

Датчик кислорода — это датчик сопротивления, который располагается около катализатора, на коллекторе впуска. Параметры, передаваемые этим датчиком, также передаются на управляющий блок, где проходят обработку, а затем используются в поддержании соответствующего состава топливно-воздушной смеси (ТВС). Лямбда зондом отправляются сигналы на электронный блок в случае, если в камеру двигателя поступает переобогощенная или обедненная рабочая смесь. На основании этих данных управляющий блок корректирует поступление воздуха и горючего для образования «правильной» смеси.

Принцип работы и устройство регулятора кислорода

Давайте разберем, как устроен лямбда зонд. В конструкции каждого универсального лямбда зонда имеются следующие элементы:

  1. Металлический корпус универсального контроллера со специальным отверстием для обеспечения вентиляции датчика. Кроме отверстия на корпусе имеется резьба, при помощи которой датчик ставится в соответствующее место.
  2. Резиновый уплотнитель, отвечающий за герметичность конструкции.
  3. Изолятор, который всегда изготавливается из керамики.
  4. Наконечник (также выполненный из керамических материалов).
  5. Несколько контактов, подключающих контроллер к основной сети.
  6. Щиток защиты, имеющий выпускное отверстие для отхода отработанного газа.
  7. Нагревающий элемент датчика.
  8. Вмонтированная в индивидуальный резервуар спираль.

Устройство кислородного датчика

Любое устройство (1-й и 2-й кислородный регулятор), выполняется из материалов, имеющих высокие свойства термостойкости. Это имеет огромное значение, ведь датчик постоянно работает при повышенных температурах. Элемент можно отнести к одному из типов — их отличие состоит в числе контактов (от одно- до четырехпроводных).

Как уже было отмечено ранее, диагностический регулятор содержания кислорода применяется для поддержания корректного расчёта требуемого объема топлива для установления количества воздуха, поступающего в цилиндры. Датчиком кислорода рассчитываются данные показатели соответственно с показателями экономии и экологии. Это тоже имеет значение, ведь в последнее время к средствам транспорта предъявлены очень строгие требования в вопросах безопасности экологии.

Данный элемент снижает вред для окружающей среды, опираясь на объем содержания вредных веществ в выхлопе.

Виды кислородных датчиков

Кроме лямбда-зондов из циркония, которые наиболее популярны, применяются также изделия других типов.

Датчик из титана

Этот тип кислородных устройств обладает чувствительным элементом, выполненным из прочнейшего материала — диоксид титана. Рабочий температурный режим данного устройства измеряется от 700°C. Этим устройствам не требуется атмосферный воздух, поскольку в основе принципа их действия лежит преобразование напряжения на выходе, в соответствии с концентрацией кислорода в выхлопных газах.

Виды кислородных датчиков

Широкополосный кислородный элемент

Это усовершенствованная модификация. В ее состав входит циркониевый датчик, схема которого дополнена закачивающим элементом. Контроллер из циркония обеспечивает измерение концентрации кислорода в отработанных газах, осуществляя фиксацию напряжения, которое вызвано разностью потенциалов. Затем выполняется сравнение показаний с эталонным значением (450мВ), и, при обнаружении отклонений, начинает подаваться ток, способствующий закачиванию ионов кислорода из выхлопных газов. Это производится до того момента, пока значение напряжение не сравняется с эталоном.

Рабочий ресурс кислородного устройства

Кислородный элемент является одним из датчиков, который имеет достаточно быстрый износ. Это обусловлено тем, что он подвергается постоянному контакту с отработанными газами и его рабочий ресурс прямо зависит от качества топливной смеси и отсутствия неисправностей в двигателе. К примеру, датчик из циркония рассчитан на 70-130 тыс. км пробега.

Работа нижнего и верхнего датчика находится под постоянным контролем бортовой диагностической системы. И при сбое одного из них фиксируется соответственная ошибка, при этом на приборной панели загорается лампочка («Check Engine»). Определить поломку в этом случае можно при помощи специального сканера диагностики.

При исправном функционировании лямбда зонда, параметры сигнала представлены правильной синусоидой, которая демонстрирует частоту переключения не меньше 8 раз за 10с.

Схема работы кислородного датчика

Причины неисправностей и как их определить

При неправильной работе лямбда зонда силовой агрегат автомобиля начинает работать нестабильно.

Причины поломки кислородного датчика

Рассмотрим причины, по которым регулятор может дать сбой.

  1. В электрической цепи случился разрыв, например, в точке подключения датчика к общей сети. Другой причиной может состоять в недостаточном контакте на контроллере либо его окислении.
  2. Замыкание при работе регулятора.
  3. Загрязнение, которое является самой распространенной причиной неисправности датчика. Данная поломка, зачастую, случается из-за постоянной заправки автомобиля некачественным топливом.
  4. Температурная перегрузка датчика. Данная проблемы возникает из-за сбоев в системе зажигания.
  5. Непрерывное передвижение автомобиля по бездорожью приводит к большим вибрациям и к повреждению устройства.
  6. Кислородный элемент часто ломается при попадании в систему цилиндров силового агрегата или во впускную систему антифриза.
  7. Поломка нагревателя регулятора. Очень часто данная проблема возникает из-за износа контроллера (его естественного «старения»).
  8. Датчик может выйти из строя, если двигатель работает на слишком обогащенной ТВС.

Симптомы поломки лямбда зонда

Определить неисправность кислородного датчика можно по следующим симптомам:

  • расход топлива значительно вырос;
  • обороты «плавают» при холостых оборотах силового агрегата;
  • вы стали ощущать характерные рывки, когда автомобиль набирает скорость;
  • катализатор работает нестабильно;
  • повысилась концентрация токсинов в отработанном газе.

В том случае, если вы обнаружите хотя бы один из перечисленных признаков, следует провести диагностику контроллера, а в случае необходимости — заменить его.

Датчик кислорода

Диагностика лямбда зонда

Выше мы рассказали, как работает лямбда зонд, а теперь поговорим о диагностике и прочистке датчика.

Итак, начиная диагностику, нужно погреть элемент. Для этого следует запустить силовой агрегат и дать ему работать примерно 10мин. Это должно обеспечить идеальную проводимость в электролите и создание конечного напряжения на регуляторе кислорода. Диагностика производится без отключения лямбда зонда, при работающем и прогретом моторе. Сама диагностика выполняется при помощи осциллографа — данное оборудование дает самый правильный результат.

Если нормативное значение напряжения будет отличаться от полученного при диагностике, то датчик нужно заменить. Параметр напряжения должен составлять не меньше 10,5В. Обнаружив пониженное значение напряжения следует проверить качество подключения регулятора кислорода и соответствующих разъемов, помимо этого, необходимо убедиться в заряженности аккумулятора.

Ещё нужно протестировать сопротивление датчика. Для чего требуется отключить разъем. В идеальном варианте показатель сопротивления должен находиться в интервале 2-14Ом, но это значение зависит от модели датчика кислорода.

Прочистка кислородного датчика

Если датчик не исправен, то, обычно, его требуется заменить, но в иногда проблему можно решить, почистив кислородный регулятор.

Для прочистки датчика следуйте инструкции:

  1. Отключить контроллер от питания.
  2. Демонтировать датчик. Удобнее это сделать при помощи специального инструмента, но если такового нет, то выполните демонтаж руками.
  3. Процедура прочистки осуществляется ортофосфорной кислотой. Кислородный регулятор помещается в ёмкость с кислотой ориентировочно на 10-20мин. Этого времени достаточно, чтобы кислота удалила имеющиеся отложения и окислы, не разрушив целостность электродов. Для наибольшего эффекта прочистки можно снять защитный колпак, но сделать это не всегда возможно, поскольку для демонтажа необходим токарный станок.
  4. По завершению процедуры прочистки контроллера необходимо промыть его в воде и хорошо просушить.

Если выполненные действия не привели к работоспособности устройства, то его требуется поменять. Заменяя регулятор кислорода, следует убедиться в том, что разъёмы на меняемых датчиках идентичны.

Важно! Процедура прочистки может быть выполнена лишь тогда, когда под защитным колпаком датчика присутствуют отложения.

Замена кислородного датчика

Заменяя лямбда зонд необходимо соблюдать некоторые правила:

  • выкручивать регулятор нужно на остывшем до 40-50°C моторе (в этот момент тепловая деформация не так велика, а детали не слишком раскалены);
  • выполняя монтаж нужно смазать поверхность резьбы герметиком, который исключит прикипание;
  • удостовериться в целостности уплотнительной прокладки;
  • затягивать элементы следует производить с определенным производительным моментом – так будет обеспечена нужная герметичность;
  • подключая разъём следует проверить электропроводку на повреждения;
  • после окончания процесса установки следует провести тестирование при разных режимах работы силового агрегата.

Доказательством правильной работы лямбда зонда будет отсутствие указанных ранее признаков сбоев, а также ошибок на электронном блоке управления.

Манометр

О чем эта статья:

Что такое манометр

Термин «манометр» в основе имеет два греческих слова: «измерять» и «неплотный». Из этого понятны его назначение и основные функции — измерения в неких неплотных средах (жидкостях и газах).

Манометр — это прибор для измерения искусственно созданного давления газа или жидкости в замкнутой системе.

Не следует путать его с барометром, который тоже показывает давление, но только атмосферное. В то время как с помощью манометра можно измерить, с какой силой жидкость или газ давит на стенки герметично закрытой емкости. Условно говоря, он показывает плотность воздуха внутри закрытого пространства.

Если рассматривать функционал, манометр — более широкое понятие, а барометр является его частным случаем.

Единица измерения давления: паскаль (Па). Она отражает силу в 1 Н, которая равномерно действует на площадь 1 кв. м. Также давление иногда измеряют в барах, атмосферах, миллиметрах ртутного или водяного столба.

Для чего нужен манометр

В зависимости от модификации манометры могут использоваться в самых разных сферах:

при накачивании автомобильных шин;

в обслуживании систем кондиционирования и отопления;

в гидравлических узлах для передвижения железнодорожной стрелки;

для контроля давления в пневматических агрегатах на производстве;

в нефтяной и газодобывающей промышленности;

для обслуживания двигателей на морских судах и т. д.

Основное назначение манометра — проинформировать об избыточном или недостаточном давлении воды, пара, газа или иной рабочей среды. В промышленности также выделяют сигнальные приборы, которые помогают предотвратить взрывы и техногенные катастрофы из-за разрыва емкостей с опасными веществами (например, аммиаком или горячим паром).

Жидкостный манометр

Этот тип манометров появился первым еще в XVII веке. Он ведет свое начало от опытов Торричелли — одного из учеников Галилео Галилея.

Итальянский ученый погружал в емкость запаянную с одного конца и наполненную ртутью трубку. Некоторое количество ртути выливалось из трубки, и в ее верхней части получался вакуум. На ртуть в емкости действовало атмосферное давление, а на ртуть в трубке — нет. Соответственно, при повышении атмосферного давления ртутный столбик в трубке поднимался, а при понижении — опускался.

Принцип работы жидкостного манометра в целом похож на принцип работы системы из опыта Торричелли. Этот прибор представляет собой систему сообщающихся сосудов — две трубки, соединенные в U-образную конструкцию. Система наполовину заполнена жидкостью (обычно ртутью), и если на нее действует только атмосферное давление — уровень жидкости в обеих трубках будет одинаков.

Если одну из трубок подключить к накачивающему устройству или к закрытой емкости, на жидкость в ней будет действовать измеряемое давление (Р1). В то время как на жидкость во второй трубке действует только атмосферное давление (Р2). При изменении Р1 уровень жидкости во второй трубке тоже будет меняться.

Измерив разность высоты столба Δh = h1 − h2, можно узнать, насколько изменилось давление ΔP = P1 − P2.

Результат измерений, полученный в сантиметрах ртутного столба, переводят в паскали из расчета:

1 см ртутного столба (при 0°C) = 1333,22 Па.

Для получения результата сразу в паскалях можно воспользоваться формулой, которая определяет давление воды на стенки емкости:

Р = ρgh, где ρ — плотность жидкости, g — ускорение свободного падения, h — высота столба.

Ускорение свободного падения (g) всегда равно 9,8 H/кг.

Другие виды манометров

Жидкостный манометр дает возможность точных измерений, но у него есть большой недостаток: конструкция боится ударов и вибраций. Поэтому сегодня такие приборы используются в основном в лабораториях. С развитием промышленности возникли другие типы манометров, которые могут измерять давление в любых условиях — на подвижных механизмах, при сильных вибрациях и т. д. По конструкции выделяют деформационные и поршневые (грузопоршневые) приборы.

Деформационные манометры

Манометр деформационного типа — это компактное механическое устройство, измеряющее давление сразу в паскалях (без перевода из других единиц). Его рабочим элементом является дугообразная или спиральная трубка Бурдона, в которую накачивается газ. Если давление внутри трубки повышается, она начинает распрямляться, и это движение через систему тяг передается на стрелку. При снятии давления она возвращается в свое первоначальное положение.

Вместо трубки может быть использована пружина, мембрана или другой чувствительный элемент, который деформируется под давлением. Принцип действия манометра остается тем же: деформация передается на стрелку, движущуюся по шкале.

Деформационные металлические манометры чаще всего используются в быту и на производстве. Они компактны, отлично переносят вибрации, не требуют строго вертикальной установки. Если нужно выбрать, к примеру, автомобильный манометр, он будет именно такого типа.

Поршневые манометры

Несмотря на то, что поршневые манометры были созданы раньше деформационных, они получили меньшее распространение. Сегодня такие приборы используются для исследования скважин в нефте- и газодобывающей промышленности, а также для сверки показаний в лабораториях.

На рисунке ниже можно увидеть, из чего состоит манометр поршневого типа. В самом простом варианте это емкость с маслом, соединенная при помощи штуцера с измеряемой средой. В емкость погружен цилиндр с тщательно притертым поршнем (зазор между стенками цилиндра и поршнем должен быть минимальным). На торце поршня закреплена тарель, на которую могут укладываться грузы.

Снизу на поршень действует измеряемое давление Р, сверху оно уравновешивается некой силой, создаваемой весом самого поршня и грузов G1+ G2.

Давление под поршнем рассчитывается по формуле:

где G1— масса грузов, G2— масса поршня с тарелью, g — ускорение свободного падения, F — площадь поршня.

Также давление можно выразить через силу согласно закону Паскаля:

P = F / S, где F — сила, действующая на поршень, S — площадь поршня.

С помощью поршневых маномеров впервые измеряли давление ученые-физики Георг Паррот и Эмиль Ленц. Но широкое распространение эти приборы получили благодаря некому Рухгольцу, который запустил их в массовое производство.

Задачи

Задача 1

В канистру налит бензин и высота столба составляет 0,6 м. Плотность бензина — 710 кг/м 2 . Определите давление бензина на дно канистры.

Решение:

Ускорение g равно 9,8 H/кг.

Согласно формуле, определяющей давление жидкости на стенки сосуда:

P = 710 × 9,8 × 0,6 = 4174,8 Па = 4,7 кПа.

Ответ: 4,7 кПа.

Задача 2

На поршень, погруженный в цилиндр с маслом, положили груз весом 3 кг. Площадь поршня составляет 2 см2, а его вес — 300 гр. Чему равна сила давления под поршнем?

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: